Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Biomed Imaging ; 2023: 3819587, 2023.
Article in English | MEDLINE | ID: mdl-38089593

ABSTRACT

Clustering time activity curves of PET images have been used to separate clinically relevant areas of the brain or tumours. However, PET image segmentation in multiorgan level is much less studied due to the available total-body data being limited to animal studies. Now, the new PET scanners providing the opportunity to acquire total-body PET scans also from humans are becoming more common, which opens plenty of new clinically interesting opportunities. Therefore, organ-level segmentation of PET images has important applications, yet it lacks sufficient research. In this proof of concept study, we evaluate if the previously used segmentation approaches are suitable for segmenting dynamic human total-body PET images in organ level. Our focus is on general-purpose unsupervised methods that are independent of external data and can be used for all tracers, organisms, and health conditions. Additional anatomical image modalities, such as CT or MRI, are not used, but the segmentation is done purely based on the dynamic PET images. The tested methods are commonly used building blocks of the more sophisticated methods rather than final methods as such, and our goal is to evaluate if these basic tools are suited for the arising human total-body PET image segmentation. First, we excluded methods that were computationally too demanding for the large datasets from human total-body PET scanners. These criteria filtered out most of the commonly used approaches, leaving only two clustering methods, k-means and Gaussian mixture model (GMM), for further analyses. We combined k-means with two different preprocessing approaches, namely, principal component analysis (PCA) and independent component analysis (ICA). Then, we selected a suitable number of clusters using 10 images. Finally, we tested how well the usable approaches segment the remaining PET images in organ level, highlight the best approaches together with their limitations, and discuss how further research could tackle the observed shortcomings. In this study, we utilised 40 total-body [18F] fluorodeoxyglucose PET images of rats to mimic the coming large human PET images and a few actual human total-body images to ensure that our conclusions from the rat data generalise to the human data. Our results show that ICA combined with k-means has weaker performance than the other two computationally usable approaches and that certain organs are easier to segment than others. While GMM performed sufficiently, it was by far the slowest one among the tested approaches, making k-means combined with PCA the most promising candidate for further development. However, even with the best methods, the mean Jaccard index was slightly below 0.5 for the easiest tested organ and below 0.2 for the most challenging organ. Thus, we conclude that there is a lack of accurate and computationally light general-purpose segmentation method that can analyse dynamic total-body PET images.

2.
Metabolites ; 13(3)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36984827

ABSTRACT

Human brain metabolism is susceptible to temperature changes. It has been suggested that the supraclavicular brown adipose tissue (BAT) protects the brain from these fluctuations by regulating heat production through the presence of uncoupling protein 1 (UCP-1). It remains unsolved whether inter-individual variation in the expression of UCP-1, which represents the thermogenic capacity of the supraclavicular BAT, is linked with brain metabolism during cold stress. Ten healthy human participants underwent 18F-FDG PET scanning of the brain under cold stimulus to determine brain glucose uptake (BGU). On a separate day, an excision biopsy of the supraclavicular fat-the fat proximal to the carotid arteries supplying the brain with warm blood-was performed to determine the mRNA expression of the thermogenic protein UCP-1. Expression of UCP-1 in supraclavicular BAT was directly related to the whole brain glucose uptake rate determined under cold stimulation (rho = 0.71, p = 0.03). In sub-compartmental brain analysis, UCP-1 expression in supraclavicular BAT was directly related to cold-stimulated glucose uptake rates in the hypothalamus, medulla, midbrain, limbic system, frontal lobe, occipital lobe, and parietal lobe (all rho ≥ 0.67, p < 0.05). These relationships were independent of body mass index and age. When analysing gene expressions of BAT secretome, we found a positive correlation between cold-stimulated BGU and DIO2. These findings provide evidence of functional links between brain metabolism under cold stimulation and UCP-1 and DIO2 expressions in BAT in humans. More research is needed to evaluate the importance of these findings in clinical outcomes, for instance, in examining the supporting role of BAT in cognitive functions under cold stress.

3.
J Clin Endocrinol Metab ; 107(7): 1930-1938, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35363252

ABSTRACT

CONTEXT: Glucose-dependent insulinotropic peptide (GIP) and meal ingestion increase subcutaneous adipose tissue (SAT) perfusion in healthy individuals. The effects of GIP and a meal on visceral adipose tissue (VAT) perfusion are unclear. OBJECTIVE: Our aim was to investigate the effects of meal and GIP on VAT and SAT perfusion in obese individuals with type 2 diabetes mellitus (T2DM) before and after bariatric surgery. METHODS: We recruited 10 obese individuals with T2DM scheduled for bariatric surgery and 10 control individuals. Participants were studied under 2 stimulations: meal ingestion and GIP infusion. SAT and VAT perfusion was measured using 15O-H2O positron emission tomography-magnetic resonance imaging at 3 time points: baseline, 20 minutes, and 50 minutes after the start of stimulation. Obese individuals were studied before and after bariatric surgery. RESULTS: Before bariatric surgery the responses of SAT perfusion to meal (P = .04) and GIP-infusion (P = .002) were blunted in the obese participants compared to controls. VAT perfusion response did not differ between obese and control individuals after a meal or GIP infusion. After bariatric surgery SAT perfusion response to a meal was similar to that of controls. SAT perfusion response to GIP administration remained lower in the operated-on than control participants. There was no change in VAT perfusion response after bariatric surgery. CONCLUSION: The vasodilating effects of GIP and meal are blunted in SAT but not in VAT in obese individuals with T2DM. Bariatric surgery improves the effects of a meal on SAT perfusion, but not the effects of GIP. Postprandial increase in SAT perfusion after bariatric surgery seems to be regulated in a GIP-independent manner.


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2 , Adipose Tissue , Diabetes Mellitus, Type 2/surgery , Gastric Inhibitory Polypeptide/pharmacology , Humans , Intra-Abdominal Fat , Obesity , Subcutaneous Fat
4.
Obesity (Silver Spring) ; 29(3): 543-549, 2021 03.
Article in English | MEDLINE | ID: mdl-33528921

ABSTRACT

OBJECTIVE: Gray matter (GM) volume in different brain loci has been shown to vary in obesity and diabetes, and elevated fasting plasma nonesterified fatty acid (NEFA) levels have been suggested as one potential mechanism. The hypothesis presented in this study is that brown adipose tissue (BAT) activity may correlate with GM volume in areas negatively associated with obesity and diabetes. METHODS: A total of 36 healthy patients (M/F: 12/24, age 39.7 ± 9.4 years, BMI 27.5 ± 5.6 kg/m2 ) were imaged with positron emission tomography using fatty acid analog [18 F]FTHA to measure NEFA uptake and with [15 O]H2 O to measure perfusion during cold exposure, at room temperature during fasting, or during a postprandial state. A 2-hour hyperinsulinemic euglycemic clamp was performed to measure whole-body insulin sensitivity (M value, mean 7.6 ± 3.9 mg/kg/min). T1-weighted magnetic resonance imaging at 1.5 T was performed on all patients. RESULTS: BAT NEFA uptake was associated directly with GM volume in anterior cerebellum and occipital lobe (P ≤ 0.04) when adjusted for age, gender, and intra-abdominal fat volume and with anterior cerebellum, limbic lobe, and temporal lobe GM volumes when adjusted for M value. CONCLUSIONS: BAT NEFA metabolism may participate in protection from cognitive degeneration associated with cardiometabolic risk factors, such as central obesity and insulin resistance. Potential causal relationships between BAT activity and GM volumes remain to be examined.


Subject(s)
Adipose Tissue, Brown/metabolism , Gray Matter/diagnostic imaging , Adipose Tissue, Brown/anatomy & histology , Adipose Tissue, Brown/diagnostic imaging , Adult , Fasting/metabolism , Fatty Acids/administration & dosage , Fatty Acids/pharmacokinetics , Fatty Acids, Nonesterified/administration & dosage , Fatty Acids, Nonesterified/pharmacokinetics , Female , Glucose Clamp Technique , Gray Matter/anatomy & histology , Healthy Volunteers , Humans , Insulin Resistance/physiology , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Positron-Emission Tomography/methods , Postprandial Period
5.
Physiol Rep ; 9(3): e14718, 2021 02.
Article in English | MEDLINE | ID: mdl-33580902

ABSTRACT

BACKGROUND: Sympathetic activity causes changes in electrocardiogram (ECG) during cold exposure and the changes have been studied mostly during hypothermia and less during mild acute nonshivering cold exposure. Cold-induced sympathetic activity also activates brown adipose tissue (BAT) and increases arterial blood pressure (BP) and plasma catecholamine levels. We examined changes in ECG parameters during acute nonshivering cold exposure and their associations with markers of sympathetic activity during cold exposure: brachial blood pressure (BP), plasma catecholamine levels, and BAT activity measured by positron emission tomography (PET). METHODS AND RESULTS: Healthy subjects (M/F = 13/24, aged 20-55 years) were imaged with [15 O]H2 O (perfusion, N = 37) and [18 F]FTHA to measure plasma nonesterified fatty acid uptake (NEFA uptake, N = 37) during 2-h nonshivering cold exposure. 12-lead ECG (N = 37), plasma catecholamine levels (N = 17), and brachial BP (N = 31) were measured at rest in room temperature (RT) and re-measured after a 2-h nonshivering cold exposure. There were significant differences between RT and cold exposure in P axis (35.6 ± 26.4 vs. 50.8 ± 22.7 degrees, p = 0.005), PR interval (177.7 ± 24.6 ms vs.163.0 ± 28.7 ms, p = 0.001), QRS axis (42.1 ± 31.3 vs. 56.9 ± 24.1, p = 0.003), and QT (411.7 ± 25.5 ms vs. 434.5 ± 39.3 ms, p = 0.001). There was no significant change in HR, QRS duration, QTc, JTc, and T axis during cold exposure. Systolic BP (127.2 ± 15.7 vs. 131.8 ± 17.9 mmHg, p = 0.008), diastolic BP (81.7 ± 12.0 vs. 85.4 ± 13.0 mmHg, p = 0.02), and plasma noradrenaline level increased during cold exposure (1.97 ± 0.61 vs. 5.07 ± 1.32 µmol/L, p = 0.001). Cold-induced changes in ECG parameters did not correlate with changes in BAT activity, brachial BP, plasma catecholamines, or skin temperature. CONCLUSIONS: During short-term nonshivering cold exposure, there were increases in P axis, PR interval, QRS axis, and QT compared to RT in healthy adults. Cold-induced changes in ECG parameters did not correlate with BAT activity, brachial BP, or plasma catecholamine levels which were used as markers of cold-induced sympathetic activity.


Subject(s)
Adipose Tissue, Brown/innervation , Arterial Pressure , Brachial Artery/innervation , Catecholamines/blood , Cold Temperature , Electrocardiography , Healthy Volunteers , Heart Rate , Sympathetic Nervous System/physiology , Adaptation, Physiological , Adipose Tissue, Brown/diagnostic imaging , Adipose Tissue, Brown/metabolism , Adult , Female , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Sympathetic Nervous System/metabolism , Time Factors , Young Adult
6.
Cell Metab ; 28(2): 207-216.e3, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29909972

ABSTRACT

Human studies suggest that a meal elevates glucose uptake in brown adipose tissue (BAT). However, in postprandial state the thermogenic activity and the metabolism of non-esterified fatty acids (NEFAs) in BAT remain unclear. Using indirect calorimetry combined with positron emission tomography and computed tomography (PET/CT), we showed that whole-body and BAT thermogenesis (oxygen consumption) increases after the ingestion of a mixed carbohydrate-rich meal, to the same extent as in cold stress. Postprandial NEFA uptake into BAT is minimal, possibly due to elevated plasma insulin inhibiting lipolysis. However, the variation in postprandial NEFA uptake is linked to BAT thermogenesis. We identified several genes participating in lipid metabolism to be expressed at higher levels in BAT compared with white fat in postprandial state, and to be positively correlated with BAT UCP1 expression. These findings suggest that substrates preferred by BAT in postprandial state are glucose or LPL-released NEFAs due to insulin stimulation.


Subject(s)
Adipose Tissue, Brown/physiology , Cold-Shock Response , Diet, Carbohydrate Loading , Fatty Acids, Nonesterified/metabolism , Oxygen Consumption , Thermogenesis , Adipose Tissue, White/metabolism , Adult , Case-Control Studies , Female , Humans , Insulin/metabolism , Lipolysis , Male , Middle Aged , Obesity/metabolism , Positron Emission Tomography Computed Tomography/methods , Postprandial Period , Uncoupling Protein 1/metabolism
7.
Metabolism ; 70: 23-30, 2017 05.
Article in English | MEDLINE | ID: mdl-28403942

ABSTRACT

OBJECTIVE: Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. MATERIAL AND METHODS: The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. RESULTS: The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18F-FDG PET. CONCLUSIONS: Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure.


Subject(s)
Adipose Tissue, Brown/diagnostic imaging , Magnetic Resonance Imaging/methods , Adipose Tissue, White/diagnostic imaging , Adult , Cold Temperature , Fluorodeoxyglucose F18 , Humans , Iron/metabolism , Positron-Emission Tomography/methods , Water
8.
J Clin Endocrinol Metab ; 102(7): 2258-2267, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28368474

ABSTRACT

Context: Metabolic imaging studying brown adipose tissue (BAT) physiology has increased, in which computed tomography (CT) is commonly used as an anatomical reference for metabolic positron emission tomography (PET) imaging. However, the capacity of CT to provide metabolic information has been underexploited. Objective: To evaluate whether CT radiodensity of BAT could noninvasively estimate underlying tissue morphology, regarding amount of stored triglycerides. Furthermore, could the alteration in tissue characteristics due to cold stimulus, as a marker for active BAT, be detected with radiodensity? Can BAT be differentiated from white adipose tissue (WAT) solely using CT-based measurements? Design, Setting, and Participants: A cross-sectional study evaluating 66 healthy human subjects with CT, PET, and 1H-magnetic resonance spectroscopy (1H-MRS). Main Outcome Measures: BAT radiodensity was measured with CT. BAT-stored triglyceride content was measured with 1H-MRS. Arterial blood volume in BAT, as a marker of tissue vascularity, was measured with [15O]H2O, along with glucose or fatty acid uptake using [18F]2-fluoro-2-deoxy-D-glucose or 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid PET imaging, respectively. Results: BAT radiodensity was found to be correlating with tissue-retained blood and triglyceride content. Cold stimulus induced an increase in BAT radiodensity. Active BAT depots had higher radiodensity than both nonactive BAT and WAT. BAT radiodensity associated with systemic metabolic health parameters. Conclusion: BAT radiodensity can be used as a marker of underlying tissue morphology. Active BAT can be identified using CT, exploiting tissue composition information. Moreover, BAT radiodensity provides an insight into whole-body systemic metabolic health.


Subject(s)
Adipose Tissue, Brown/diagnostic imaging , Adipose Tissue, Brown/metabolism , Adult , Anthropometry/methods , Cold Temperature , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Tomography, X-Ray Computed/methods , Triglycerides/metabolism
9.
J Clin Endocrinol Metab ; 102(4): 1200-1207, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28323929

ABSTRACT

Background and Aim: The metabolic activity of human brown adipose tissue (BAT) has been previously examined using positron emission tomography (PET). The aim of this study was to use proton magnetic resonance spectroscopy (1H MRS) to investigate whether the temperature and the fat fraction (FF) of BAT and white adipose tissue (WAT) are associated with BAT metabolic activity determined by deoxy-2-18F-fluoro-d-glucose (18F-FDG)-PET. Materials and Methods: Ten healthy subjects (four women, six men; 25 to 45 years of age) were studied using PET-magnetic resonance imaging during acute cold exposure and at ambient room temperature. BAT and subcutaneous WAT 1H MRS were measured. The tissue temperature and the FF were derived from the spectra. Tissue metabolic activity was studied through glucose uptake using dynamic FDG PET scanning during cold exposure. A 2-hour hyperinsulinemic euglycemic clamp was performed on eight subjects. Results: The metabolic activity of BAT associated directly with the heat production capacity and inversely with the FF of the tissue. In addition, the lipid-burning capacity of BAT associated with whole-body insulin sensitivity. During cold exposure, the FF of BAT was lower than at room temperature, and cold-induced FF of BAT associated inversely with high-density lipoprotein and directly with low-density lipoprotein cholesterol. Conclusion: Both 1H MRS-derived temperature and FF are promising methods to study BAT activity noninvasively. The association between the lipid-burning capacity of BAT and whole-body insulin sensitivity emphasizes the role of BAT in glucose handling. Furthermore, the relation of FF to high-density lipoprotein and low-density lipoprotein cholesterol suggests that BAT has a role in lipid clearance, thus protecting tissues from excess lipid load.


Subject(s)
Adipose Tissue, Brown/metabolism , Adiposity/physiology , Body Temperature Regulation/physiology , Magnetic Resonance Spectroscopy/methods , Thermometry/methods , Adipose Tissue, Brown/diagnostic imaging , Adult , Cold Temperature , Feasibility Studies , Female , Fluorodeoxyglucose F18 , Glucose Clamp Technique , Healthy Volunteers , Humans , Insulin Resistance , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Male , Middle Aged , Positron-Emission Tomography , Radiopharmaceuticals , Subcutaneous Fat/metabolism
10.
Eur J Nucl Med Mol Imaging ; 43(10): 1878-86, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26993316

ABSTRACT

PURPOSE: Brown adipose tissue (BAT) is considered a potential target for combatting obesity, as it produces heat instead of ATP in cellular respiration due to uncoupling protein-1 (UCP-1) in mitochondria. However, BAT-specific thermogenic capacity, in comparison to whole-body thermogenesis during cold stimulus, is still controversial. In our present study, we aimed to determine human BAT oxygen consumption with [(15)O]O2 positron emission tomography (PET) imaging. Further, we explored whether BAT-specific energy expenditure (EE) is associated with BAT blood flow, non-esterified fatty acid (NEFA) uptake, and whole-body EE. METHODS: Seven healthy study subjects were studied at two different scanning sessions, 1) at room temperature (RT) and 2) with acute cold exposure. Radiotracers [(15)O]O2, [(15)O]H2O, and [(18)F]FTHA were given for the measurements of BAT oxygen consumption, blood flow, and NEFA uptake, respectively, with PET-CT. Indirect calorimetry was performed to assess differences in whole-body EE between RT and cold. RESULTS: BAT-specific EE and oxygen consumption was higher during cold stimulus (approx. 50 %); similarly, whole-body EE was higher during cold stimulus (range 2-47 %). However, there was no association in BAT-specific EE and whole-body EE. BAT-specific EE was found to be a minor contributor in cold induced whole-body thermogenesis (almost 1 % of total whole-body elevation in EE). Certain deep muscles in the cervico-thoracic region made a major contribution to this cold-induced thermogenesis (CIT) without any visual signs or individual perception of shivering. Moreover, BAT-specific EE associated with BAT blood flow and NEFA uptake both at RT and during cold stimulus. CONCLUSION: Our study suggests that BAT is a minor and deep muscles are a major contributor to CIT. In BAT, both in RT and during cold, cellular respiration is linked with circulatory NEFA uptake.


Subject(s)
Adipose Tissue, Brown/diagnostic imaging , Adipose Tissue, Brown/physiology , Cold-Shock Response/physiology , Oxygen Consumption/physiology , Positron-Emission Tomography/methods , Thermogenesis/physiology , Adult , Cold Temperature , Female , Humans , Male , Oxygen Radioisotopes , Radiopharmaceuticals , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...