Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Ultrason Sonochem ; 99: 106572, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696213

ABSTRACT

The utilization of agricultural residues to obtain biocompounds of high-added value has significantly increased in the past decades. The conversion of agro-based residues into valuable products appears to be an economically efficient, environment-friendly, and protracted waste management practice. The implementation of ultrasonic technologies in the conversion of value-added goods from agricultural waste materials through pre-treatment and valorization processes has imparted many advantageous effects including rapid processing, effective process performance, minimization of processing steps, minimal dependency on harmful chemicals, and an increased yield and properties of bio-products. To further enliven the literature and inspire new research investigations, this review covers the comprehensive work including theoretical principles, processes, and potential benefits of ultrasonic treatment technologies to assist the production of bio-products which emphasize the extraction yield and the characteristic of the end-product extracted from agriculture residues. A detailed evaluation of these methods and key aspects impacting their performance as well as the features and shortcomings of each ultrasound-assisted approach is also discussed. This review also addressed some of the challenges associated with using ultrasonic irradiation and proposed several potential techniques to maximize productivity. Understanding the concept of ultrasonication technique allow the academician and industrial practitioners to explore the possibility of applying a greener and sustainable approach of biomass extraction to be translated into higher scale production of commercial products.

2.
Polymers (Basel) ; 15(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771971

ABSTRACT

This present study optimized the cellulose nanofiber (CNF) loading and melt processing conditions of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-11% HHx) bionanocomposite fabrication in twin screw extruder by using the response surface methodology (RSM). A face-centered central composite design (CCD) was applied to statistically specify the important parameters, namely CNF loading (1-9 wt.%), rotational speed (20-60 rpm), and temperature (135-175 °C), on the mechanical properties of the P(HB-co-11% HHx) bionanocomposites. The developed model reveals that CNF loading and temperature were the dominating parameters that enhanced the mechanical properties of the P(HB-co-11% HHx)/CNF bionanocomposites. The optimal CNF loading, rotational speed, and temperature for P(HB-co-11% HHx) bionanocomposite fabrication were 1.5 wt.%, 20 rpm, and 160 °C, respectively. The predicted tensile strength, flexural strength, and flexural modulus for these optimum conditions were 22.96 MPa, 33.91 MPa, and 1.02 GPa, respectively, with maximum desirability of 0.929. P(HB-co-11% HHx)/CNF bionanocomposites exhibited improved tensile strength, flexural strength, and modulus by 17, 6, and 20%, respectively, as compared to the neat P(HB-co-11% HHx). While the crystallinity of P(HB-co-11% HHx)/CNF bionanocomposites increased by 17% under the optimal fabrication conditions, the thermal stability of the P(HB-co-11% HHx)/CNF bionanocomposites was not significantly different from neat P(HB-co-11% HHx).

3.
Polymers (Basel) ; 13(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810584

ABSTRACT

A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs-both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites-was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.

4.
Polymers (Basel) ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396733

ABSTRACT

The thermal, thermo-mechanical and flammability properties of kenaf core hybrid polymer nanocomposites reinforced with unbleached and bleached nanocrystalline cellulose (NCC) were studied. The studied chemical composition found that unbleached NCC (NCC-UB) had 90% more lignin content compared to bleached NCC (NCC-B). Nanocelluloses were incorporated within polypropylene (PP) as the matrix, together with kenaf core as a main reinforcement and maleic anhydride grafted polypropylene (MAPP) as a coupling agent via a melt mixing compounding process. The result showed that the thermal stability of the nanocomposites was generally affected by the presence of lignin in NCC-UB and sulfate group on the surface of NCC-B. The residual lignin in NCC-UB appeared to overcome the poor thermal stability of the composites that was caused by sulfation during the hydrolysis process. The lignin helped to promote the late degradation of the nanocomposites, with the melting temperature occurring at a relatively higher temperature of 219.1 °C for PP/NCC-UB, compared to 185.9 °C for PP/NCC-B. Between the two types of nanocomposites, PP/NCC-B had notably lower thermo-mechanical properties, which can be attributed to the poor bonding and dispersion properties of the NCC-B in the nanocomposites blend. The PP/NCC-UB showed better thermal properties due to the effect of residual lignin, which acted as a compatibilizer between NCC-UB and polymer matrix, thus improved the bonding properties. The residual lignin in PP/NCC-UB helped to promote char formation and slowed down the burning process, thus increasing the flame resistance of the nanocomposites. Overall, the residual lignin on the surface of NCC-UB appeared to aid better stability on the thermal and flammability properties of the nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL