Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
FASEB J ; 38(13): e23813, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38976162

ABSTRACT

Beta-blockers are commonly used medications that antagonize ß-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.


Subject(s)
Adrenergic beta-Antagonists , Drug Resistance, Neoplasm , Neoplasms , Humans , Adrenergic beta-Antagonists/therapeutic use , Adrenergic beta-Antagonists/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Cardiovascular Diseases/drug therapy , Disease Progression , Receptors, Adrenergic, beta/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
2.
Eur J Pharm Sci ; 200: 106849, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992452

ABSTRACT

Doxorubicin (DOX) is an anthracycline chemotherapy drug widely employed in the treatment of various cancers, known for its potent antineoplastic properties but often associated with dose-dependent cardiotoxicity, limiting its clinical use. This review explores the complex molecular details that determine the heart-protective effectiveness of carvedilol in relation to cardiotoxicity caused by DOX. The harmful effects of DOX on heart cells could include oxidative stress, DNA damage, iron imbalance, disruption of autophagy, calcium imbalance, apoptosis, dysregulation of topoisomerase 2-beta, arrhythmogenicity, and inflammatory responses. This review carefully reveals how carvedilol serves as a strong protective mechanism, strategically reducing each aspect of cardiac damage caused by DOX. Carvedilol's antioxidant capabilities involve neutralizing free radicals and adjusting crucial antioxidant enzymes. It skillfully manages iron balance, controls autophagy, and restores the calcium balance essential for cellular stability. Moreover, the anti-apoptotic effects of carvedilol are outlined through the adjustment of Bcl-2 family proteins and activation of the Akt signaling pathway. The medication also controls topoisomerase 2-beta and reduces the renin-angiotensin-aldosterone system, together offering a thorough defense against cardiotoxicity induced by DOX. These findings not only provide detailed understanding into the molecular mechanisms that coordinate heart protection by carvedilol but also offer considerable potential for the creation of targeted treatment strategies intended to relieve cardiotoxicity caused by chemotherapy.

3.
Curr Atheroscler Rep ; 26(8): 395-410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38869707

ABSTRACT

PURPOSE OF REVIEW: To eradicate atherosclerotic diseases, novel biomarkers, and future therapy targets must reveal the burden of early atherosclerosis (AS), which occurs before life-threatening unstable plaques form. The chemical and biological features of microRNAs (miRNAs) make them interesting biomarkers for numerous diseases. We summarized the latest research on miRNA regulatory mechanisms in AS progression studies, which may help us use miRNAs as biomarkers and treatments for difficult-to-treat diseases. RECENT FINDINGS: Recent research has demonstrated that miRNAs have a regulatory function in the observed changes in gene and protein expression during atherogenesis, the process that leads to atherosclerosis. Several miRNAs play a role in the development of atherosclerosis, and these miRNAs could potentially serve as non-invasive biomarkers for atherosclerosis in various regions of the body. These miRNAs have the potential to serve as biomarkers and targets for early treatment of atherosclerosis. The start and development of AS require different miRNAs. It reviews new research on miRNAs affecting endothelium, vascular smooth muscle, vascular inflammation, lipid retention, and cholesterol metabolism in AS. A miRNA gene expression profile circulates with AS everywhere. AS therapies include lipid metabolism, inflammation reduction, and oxidative stress inhibition. Clinical use of miRNAs requires tremendous progress. We think tiny miRNAs can enable personalized treatment.


Subject(s)
Atherosclerosis , Biomarkers , MicroRNAs , Humans , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/diagnosis , Atherosclerosis/therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Prognosis , Animals
4.
Life Sci ; 351: 122791, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38848936

ABSTRACT

Sorafenib is a multikinase inhibitor employed for managing hepatocellular carcinoma (HCC). The emergence of sorafenib resistance presents an obstacle to its therapeutic efficacy. One notable approach to overcoming sorafenib resistance is the exploration of combination therapies. The role of hedgehog signaling in sorafenib resistance has been also examined in HCC. R51211, known as itraconazole, has been safely employed in clinical practice. Through in vitro and in vivo investigations, we assessed the potential of R51211 to enhance the therapeutic efficacy of sorafenib by inhibiting the hedgehog signaling. The zero-interaction potency synergy model demonstrated a synergistic interaction between R51211 and sorafenib, a phenomenon reversed by the action of a smoothened receptor agonist. This dual therapy exhibited an increased capacity to induce apoptosis, as evidenced by alterations in the Bax/BCL-2 ratio and caspase-3, along with a propensity to promote autophagy, as indicated by changes in BECN1, p62, and the LC3I/LC3II ratio. Furthermore, the combination therapy resulted in significant reductions in biomarkers associated with liver preneoplastic alterations, improved liver microstructure, and mitigated changes in liver function enzymes. The substantial decrease in hedgehog components (Shh, SMO, GLI1, and GLI2) following R51211 treatment appears to be a key factor contributing to the increased efficacy of sorafenib. In conclusion, our study highlights the potential of R51211 as an adjunct to sorafenib, introducing a new dimension to this combination therapy through the modulation of the hedgehog signaling pathway. Further investigations are essential to validate the therapeutic efficacy of this combined approach in inhibiting the development of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Hedgehog Proteins , Itraconazole , Liver Neoplasms , Signal Transduction , Sorafenib , Sorafenib/pharmacology , Sorafenib/therapeutic use , Hedgehog Proteins/metabolism , Humans , Animals , Signal Transduction/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Mice , Itraconazole/pharmacology , Itraconazole/therapeutic use , Apoptosis/drug effects , Male , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Synergism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects
5.
FASEB J ; 38(11): e23734, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847486

ABSTRACT

The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.


Subject(s)
Cell Cycle , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Animals , Molecular Targeted Therapy/methods
6.
Front Pharmacol ; 15: 1377980, 2024.
Article in English | MEDLINE | ID: mdl-38808257

ABSTRACT

Liver fibrosis is a disease with a great global health and economic burden. Existing data highlights itraconazole (ITRCZ) as a potentially effective anti-fibrotic therapy. However, ITRCZ effect is hindered by several limitations, such as poor solubility and bioavailability. This study aimed to formulate and optimize chitosan nanoparticles (Cht NPs) loaded with ITRCZ as a new strategy for managing liver fibrosis. ITRCZ-Cht NPs were optimized utilizing a developed 22 full factorial design. The optimized formula (F3) underwent comprehensive in vitro and in vivo characterization. In vitro assessments revealed that F3 exhibited an entrapment efficiency of 89.65% ± 0.57%, a 169.6 ± 1.77 nm particle size, and a zeta potential of +15.93 ± 0.21 mV. Furthermore, in vitro release studies indicated that the release of ITRCZ from F3 adhered closely to the first-order model, demonstrating a significant enhancement (p-value < 0.05) in cumulative release compared to plain ITRCZ suspension. This formula increased primary hepatocyte survival and decreased LDH activity in vitro. The in vivo evaluation of F3 in a rat model of liver fibrosis revealed improved liver function and structure. ITRCZ-Cht NPs displayed potent antifibrotic effects as revealed by the downregulation of TGF-ß, PDGF-BB, and TIMP-1 as well as decreased hydroxyproline content and α-SMA immunoexpression. Anti-inflammatory potential was evident by reduced TNF-α and p65 nuclear translocation. These effects were likely ascribed to the modulation of Hedgehog components SMO, GLI1, and GLI2. These findings theorize ITRCZ-Cht NPs as a promising formulation for treating liver fibrosis. However, further investigations are deemed necessary.

7.
Front Cell Neurosci ; 18: 1336145, 2024.
Article in English | MEDLINE | ID: mdl-38699177

ABSTRACT

The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.

8.
Eur J Pharm Sci ; 198: 106792, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714237

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.


Subject(s)
HSP90 Heat-Shock Proteins , Hedgehog Proteins , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Male , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hep G2 Cells , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Drug Therapy, Combination , Rats , Rats, Sprague-Dawley , Cholesterol/metabolism
9.
Toxicol Appl Pharmacol ; 486: 116943, 2024 May.
Article in English | MEDLINE | ID: mdl-38677600

ABSTRACT

Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body ß-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases ß-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous ß-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of ß-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous ß-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma ß-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma ß-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.


Subject(s)
3-Hydroxybutyric Acid , Colitis, Ulcerative , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , 3-Hydroxybutyric Acid/pharmacology , Rats , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammasomes/metabolism , Inflammasomes/drug effects , Dextran Sulfate/toxicity , Colon/drug effects , Colon/pathology , Colon/metabolism , NF-kappa B/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Ketones/pharmacology
11.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38354025

ABSTRACT

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Subject(s)
Carcinoma, Hepatocellular , Dipeptidyl-Peptidase IV Inhibitors , Liver Neoplasms , Animals , Rats , Linagliptin/pharmacology , AMP-Activated Protein Kinases , Diethylnitrosamine/toxicity , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Hypoglycemic Agents , Protease Inhibitors , Antiviral Agents , Anti-Inflammatory Agents
12.
Pathol Res Pract ; 253: 155086, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38176308

ABSTRACT

Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/ß-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rats , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Hedgehog Proteins/genetics , Itraconazole/pharmacology , Itraconazole/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Wnt Signaling Pathway
13.
Pathol Res Pract ; 254: 155147, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246033

ABSTRACT

Asthma is a diverse inflammatory illness affecting the respiratory passages, leading to breathing challenges, bouts of coughing and wheezing, and, in severe instances, significant deterioration in quality of life. Epigenetic regulation, which involves the control of gene expression through processes such as post-transcriptional modulation of microRNAs (miRNAs), plays a role in the evolution of various asthma subtypes. In immune-mediated diseases, miRNAs play a regulatory role in the behavior of cells that form the airway structure and those responsible for defense mechanisms in the bronchi and lungs. They control various cellular processes such as survival, growth, proliferation, and the production of chemokines and immune mediators. miRNAs possess chemical and biological characteristics that qualify them as suitable biomarkers for diseases. They allow for the categorization of patients to optimize drug selection, thus streamlining clinical management and decreasing both the economic burden and the necessity for critical care related to the disease. This study provides a concise overview of the functions of miRNAs in asthma and elucidates their regulatory effects on the underlying processes of the disease. We provide a detailed account of the present status of miRNAs as biomarkers for categorizing asthma, identifying specific asthma subtypes, and selecting appropriate treatment options.


Subject(s)
Asthma , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Epigenesis, Genetic , Quality of Life , Asthma/diagnosis , Asthma/genetics , Asthma/drug therapy , Biomarkers
14.
Pathol Res Pract ; 253: 155023, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081104

ABSTRACT

Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.


Subject(s)
MicroRNAs , Parkinson Disease , Humans , MicroRNAs/metabolism , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/therapy , Dopamine/therapeutic use , Brain/pathology
15.
Pathol Res Pract ; 253: 155007, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061270

ABSTRACT

Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , MicroRNAs , Humans , Aged , MicroRNAs/genetics , MicroRNAs/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Brain/metabolism , RNA, Messenger , Biomarkers/metabolism
16.
Pathol Res Pract ; 253: 155027, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101159

ABSTRACT

Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.


Subject(s)
MicroRNAs , Mouth Neoplasms , Humans , MicroRNAs/metabolism , Carcinogenesis/genetics , Mouth Neoplasms/diagnosis , Mouth Neoplasms/genetics , Oncogenes , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/genetics , Epithelial-Mesenchymal Transition/genetics
17.
ACS Omega ; 8(46): 44250-44264, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38027391

ABSTRACT

Two hybrid series of pyrazole-clubbed pyrimidines 5a-c and pyrazole-clubbed pyrazoline compounds 6a,b and 7 were designed as attractive scaffolds to be investigated in vitro and in vivo for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. From the results of the in vitro antibacterial screening, compound 5c showed excellent activity (minimal inhibitory concentration, MIC = 521 µM) when compared with that of the reference antibiotic levofloxacin (MIC = 346 µM). The inhibition of the target dihydrofolate reductase (DHFR) enzyme by compounds 4 and 5a-c (IC50 = 5.00 ± 0.23, 4.20 ± 0.20, 4.10 ± 0.19, and 4.00 ± 0.18 µM, respectively) was found to be better than the reference drug trimethoprim (IC50 = 5.54 ± 0.28 µM). Molecular modeling simulation results have justified the order of activity of all the newly synthesized compounds as DHFR enzyme inhibitors, and compound 5c exhibited the best binding profile (-13.6169386 kcal/mol). Hence, the most potent inhibitor of the DHFR enzyme, 5c, was chosen to be evaluated in vivo for its activity in treating MRSA-induced keratitis in rats and that, in turn, significantly (P < 0.0001) reduced infection in rats when compared to MRSA-treated group results.

18.
Int Arch Otorhinolaryngol ; 27(4): e565-e570, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37876695

ABSTRACT

Introduction Computed tomography (CT) details of the external auditory canal (EAC) are not fully covered in the literature, so building up base for the CT evaluation and description is important. Preoperative details of the EAC are mandatory before any approach or procedure involving the canal. Objective To determine the different dimensions, measurements, and grading of the EAC by CT scan that were not previously published. Methods The CT scans of 100 temporal bones (200 sides) were included. Axial images were acquired with multiplanar reformates to obtain delicate details in coronal and sagittal planes for all subjects. Results At the EAC entry, the mean vertical length (height) was 7.75 ± 1 mm, and its mean horizontal length (width) was 6.1 ± 0.8. At the bony cartilaginous junction of the EAC, the mean vertical length was 7.88 ± 1 mm, and its mean horizontal length was 6.22 ± 0.9. At the EAC isthmus, the mean vertical length was 6.8 ± 0.97 mm, and its mean horizontal length was 5.2 ± 0.76. At the medial end of the EAC, the mean vertical length was 7.1 ± 0.9 mm, and its mean horizontal length was 5.4 ± 0.85. There were no reported significant differences between right and left sides in all dimensions. Males showed significantly longer vertical and horizontal dimensions of the EAC entry, vertical dimension of the isthmus, and vertical dimension of the medial end of the EAC than females. Conclusion This study improves otologists and radiologists' awareness of EAC variations in the ear field and can be of help to residents in training.

19.
Front Pharmacol ; 14: 1239025, 2023.
Article in English | MEDLINE | ID: mdl-37841914

ABSTRACT

Ulcerative colitis (UC) is a chronic relapsing inflammatory disease of the colorectal area that demonstrates a dramatically increasing incidence worldwide. This study provides novel insights into the capacity of the exogenous ß-hydroxybutyrate and ketogenic diet (KD) consumption to alleviate dextran sodium sulfate (DSS)-induced UC in rats. Remarkably, both interventions attenuated disease activity and colon weight-to-length ratio, and improved macro and microstructures of the damaged colon. Importantly, both ß-hydroxybutyrate and KD curbed the DSS-induced aberrant NLRP3 inflammasome activation as observed in mRNA and protein expression analysis. Additionally, inhibition of the NLRP3/NGSDMD-mediated pyroptosis was detected in response to both regimens. In parallel, these modalities attenuated caspase-1 and its associated consequences of IL-1ß and IL-18 overproduction. They also mitigated apoptosis as indicated by the inactivation of caspase-3. The anti-inflammatory effects of BHB and KD were confirmed by the reported decline in the levels of inflammatory markers including MPO, NFκB, IL-6, and TNF-α. Moreover, these interventions exhibited antioxidative properties by reducing ROS production and improving antioxidative enzymes. Their effectiveness in mitigating UC was also evident in the renovation of normal intestinal epithelial barrier function, as shown by correcting the discrepancies in the levels of tight junction proteins ZO-1, OCLN, and CLDN5. Furthermore, their effects on the intestinal microbiota homeostasis were investigated. In terms of autophagy, exogenous ß-hydroxybutyrate upregulated BECN-1 and downregulated p62, which may account for its superiority over KD in attenuating colonic damage. In conclusion, this study provides experimental evidence supporting the potential therapeutic use of ß-hydroxybutyrate or ß-hydroxybutyrate-boosting regimens in UC.

20.
Discov Nano ; 18(1): 116, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715929

ABSTRACT

HCV, hepatitis C virus, is a virus that causes damage to the liver. Both chronic infection or lack of treatment increase morbidity except if it is an acute infection, as the body clears the virus without any intervention. Also, the virus has many genotypes, and until now, there has yet to be a single treatment capable of affecting and treating all these genotypes at once. This review will discuss the main and most used old treatments, IFN-a, PEG IFN-a, Ribavirin, Celgosvir, and sofosbuvir alone and with the combination of other drugs and their drawbacks. They should be given in combination to improve the effect on the virus compared with being administrated independently, as in the case of sofosbuvir. For these reasons, the need for new treatments and diagnostic tools arises, and the rule of nanotechnology comes here. The role of carbon nanotubes, dendrimers, and fullerenes will be discussed. CNTs, carbon nanotubes, are one-dimensional structures composed of a cylindrical sheet of graphite and are mainly used for diagnostic purposes against HCV. Dendrimers, three-dimensional highly branched structures, are macromolecules that provide better drug delivery and treatment options due to their unique structure that can be modified, producing versatile types; each has unique properties. Fullerenes which are cage like structures derived and closely related to CNTs, and composed of carbon atoms that can be substituted by other atoms which in return open unlimited usage for these carbon based materials. Fullerenes rule is unique since it has two mechanisms that prevent the virus from binding and acting on the virus-replicating enzyme. However, their charge needs to be determined; otherwise, it will lead to cytotoxicity. Lastly, no review has been done on the role of nanotechnology against HCV yet.

SELECTION OF CITATIONS
SEARCH DETAIL