Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Genet Metab Rep ; 32: 100882, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35600090

ABSTRACT

Phenylketonuria (PKU) is a genetic disorder affecting around 1 in 12,000 live births (1), caused by a mutation in the phenylalanine hydroxylase (PAH) gene in the liver which facilitates the catabolism of phenylalanine (Phe). Without a functional copy of PAH, levels of Phe in the blood and tissues rise, resulting in potentially life-threatening damage to the central nervous system. (2) Treatment options for PKU are limited, and center around adherence to a strict PKU diet that suffers from poor patient compliance. There are two approved drugs available, one of which must be used in conjunction with the PKU diet and another that has serious immunological side effects. Here we demonstrate that the LUNAR® delivery technology is capable of delivering mRNA for a replacement enzyme, the bacterial phenylalanine ammonia lyase (avPAL), into the hepatic tissue of a PKU mouse, and that the enzyme is capable of metabolizing Phe and reducing serum levels of Phe for more than five days post-transfection. We further demonstrate the ability of LUNAR to deliver a plant-derived PAL protein with a similar impact on the level of serum Phe. Taken together these results demonstrate both the capability of LUNAR for the targeted delivery of PAL mRNA into hepatic tissue in vivo, replacing the defective PAH protein and successfully reducing serum Phe levels, thereby addressing the underlying cause of PKU symptoms. Secondly, that plant-based PAL proteins are a viable alternative to bacterial avPAL to reduce the immunogenic response.

2.
Mol Ther Nucleic Acids ; 28: 87-98, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35356682

ABSTRACT

Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pah enu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pah enu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.

3.
Mol Ther ; 29(6): 1970-1983, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33823303

ABSTRACT

A self-transcribing and replicating RNA (STARR)-based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full-length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolongs SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell-mediated immunity produced a strong viral antigen-specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for interferon (IFN)γ and interleukin-4 (IL-4)-positive CD4+ T helper (Th) lymphocytes as well as anti-spike glycoprotein immunoglobulin G (IgG)2a/IgG1 ratios supported a strong Th1-dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 µg and 10 µg doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of LUNAR-COV19 as a single-dose vaccine.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Alphavirus/genetics , Alphavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Gene Expression , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Mice , Mice, Transgenic , Replicon/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/virology , Transgenes , Treatment Outcome , Vaccination/methods , Vaccines, Synthetic/biosynthesis , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , mRNA Vaccines
4.
J Med Chem ; 63(21): 12992-13012, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33119286

ABSTRACT

Ionizable cationic lipids are critical components involved in nanoparticle formulations, which are utilized in delivery platforms for RNA therapeutics. While general criteria regarding lipophilicity and measured pKa in formulation are understood to have impacts on utility in vivo, greater granularity with respect to the impacts of the structure on calculated and measured physicochemical parameters and the subsequent performance of those ionizable cationic lipids in in vivo studies would be beneficial. Herein, we describe structural alterations made within a lipid class exemplified by 4, which allow us to tune calculated and measured physicochemical parameters for improved performance, resulting in substantial improvements versus the state of the art at the outset of these studies, resulting in good in vivo activity within a range of measured basicity (pKa = 6.0-6.6) and lipophilicity (cLogD = 10-14).


Subject(s)
Lipids/chemistry , RNA, Small Interfering/metabolism , Transfection/methods , Animals , Cations/chemistry , Factor VII/antagonists & inhibitors , Factor VII/genetics , Factor VII/metabolism , Female , Humans , Kinetics , Lipids/chemical synthesis , Mice , Nanoparticles/chemistry , Particle Size , RNA Interference , RNA Stability , RNA, Small Interfering/blood , Structure-Activity Relationship
5.
Sci Rep ; 6: 37977, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905482

ABSTRACT

The IL-23/IL-17 pathway is implicated in autoimmune diseases, particularly psoriasis, where biologics targeting IL-23 and IL-17 have shown significant clinical efficacy. Retinoid-related orphan nuclear receptor gamma t (RORγt) is required for Th17 differentiation and IL-17 production in adaptive and innate immune cells. We identified JNJ-54271074, a potent and highly-selective RORγt inverse agonist, which dose-dependently inhibited RORγt-driven transcription, decreased co-activator binding and promoted interaction with co-repressor protein. This compound selectively blocked Th17 differentiation, significantly reduced IL-17A production from memory T cells, and decreased IL-17A- and IL-22-producing human and murine γδ and NKT cells. In a murine collagen-induced arthritis model, JNJ-54271074 dose-dependently suppressed joint inflammation. Furthermore, JNJ-54271074 suppressed IL-17A production in human PBMC from rheumatoid arthritis patients. RORγt-deficient mice showed decreased IL-23-induced psoriasis-like skin inflammation and cytokine gene expression, consistent with dose-dependent inhibition in wild-type mice through oral dosing of JNJ-54271074. In a translational model of human psoriatic epidermal cells and skin-homing T cells, JNJ-54271074 selectively inhibited streptococcus extract-induced IL-17A and IL-17F. JNJ-54271074 is thus a potent, selective RORγt modulator with therapeutic potential in IL-23/IL-17 mediated autoimmune diseases.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Peptides, Cyclic/administration & dosage , Psoriasis/drug therapy , Th17 Cells/drug effects , Administration, Oral , Animals , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Interleukin-17/metabolism , Interleukins/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Peptides, Cyclic/pharmacology , Psoriasis/genetics , Psoriasis/metabolism , Th17 Cells/cytology , Th17 Cells/metabolism , Transcription, Genetic , Interleukin-22
6.
Proc Natl Acad Sci U S A ; 111(33): 12163-8, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25092323

ABSTRACT

The RAR-related orphan receptor gamma t (RORγt) is a nuclear receptor required for generating IL-17-producing CD4(+) Th17 T cells, which are essential in host defense and may play key pathogenic roles in autoimmune diseases. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol and lipid metabolism. Here, we describe the identification of several naturally occurring oxysterols as RORγt agonists. The most potent and selective activator for RORγt is 7ß, 27-dihydroxycholesterol (7ß, 27-OHC). We show that these oxysterols reverse the inhibitory effect of an RORγt antagonist, ursolic acid, in RORγ- or RORγt-dependent cell-based reporter assays. These ligands bind directly to recombinant RORγ ligand binding domain (LBD), promote recruitment of a coactivator peptide, and reduce binding of a corepressor peptide to RORγ LBD. In primary cells, 7ß, 27-OHC and 7α, 27-OHC enhance the differentiation of murine and human IL-17-producing Th17 cells in an RORγt-dependent manner. Importantly, we showed that Th17, but not Th1 cells, preferentially produce these two oxysterols. In vivo, administration of 7ß, 27-OHC in mice enhanced IL-17 production. Mice deficient in CYP27A1, a key enzyme in generating these oxysterols, showed significant reduction of IL-17-producing cells, including CD4(+) and γδ(+) T cells, similar to the deficiency observed in RORγt knockout mice. Our results reveal a previously unknown mechanism for selected oxysterols as immune modulators and a direct role for CYP27A1 in generating these RORγt agonist ligands, which we propose as RORγt endogenous ligands, driving both innate and adaptive IL-17-dependent immune responses.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sterols/pharmacology , Th17 Cells/cytology , Animals , Cell Differentiation , Cholestanetriol 26-Monooxygenase/metabolism , Interleukin-17/biosynthesis , Ligands , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Sterols/metabolism
7.
Int J Toxicol ; 32(4): 251-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23788329

ABSTRACT

Cisplatin (CDDP) is known to produce renal proximal tubule injury. Various renal biomarkers have been related to CDDP nephrotoxicity in previous research, but the temporal and spatial relationship of these biomarkers to injury reversal has not been well defined. In this study, the progression and reversal of renal histopathology findings relative to serum and urinary biomarker changes were examined during a 4-week postdose period following single intraperitoneal administration of CDDP (1 mg/kg) or 0.9% saline. Degeneration, vacuolation, inflammation, and regeneration of the S3 segment of proximal tubules were evident 72 hours following CDDP administration. Tubular degeneration and regeneration were also observed at 1 and 1.5 weeks but at lower incidences and/or severity indicating partial reversal. Complete histologic reversal was observed by 2 weeks following CDDP administration. Urinary kidney injury molecule 1 (KIM-1), α-glutathione-S-transferase (α-GST), and albumin levels increased at 72 hours postdosing, concurrently with the earliest histologic evidence of tubule injury. Changes in urinary KIM-1 correlated with KIM-1 immunostaining in the proximal tubular epithelial cells. No significant changes in serum biomarkers occurred except for a minimal increase in urea nitrogen at 1.5 weeks postdosing. Of the novel renal biomarkers examined, urinary KIM-1, α-GST, and albumin showed excellent concordance with CDDP-induced renal injury progression and reversal; and these biomarkers were more sensitive than traditional serum biomarkers in detecting early, acute renal tubular damage confirmed by histopathology. Furthermore, urinary KIM-1, α-GST, and albumin outperformed other biomarkers in correlating with the time of maximum histologic injury.


Subject(s)
Biomarkers/blood , Biomarkers/urine , Cisplatin/administration & dosage , Kidney Tubules, Proximal/drug effects , Albumins/metabolism , Animals , Cell Adhesion Molecules/metabolism , Clusterin/urine , Glutathione Transferase/metabolism , Immunohistochemistry , Isoenzymes/metabolism , Kidney Tubules, Proximal/pathology , Male , Rats , Rats, Sprague-Dawley
8.
Bioorg Med Chem Lett ; 22(2): 1237-41, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22182498

ABSTRACT

The overproduction of nitric oxide during the biological response to inflammation by the nitric oxide synthase (NOS) enzymes have been implicated in the pathology of many diseases. By removal of the amide core from uHTS-derived quinolone 4, a new series highly potent heteroaromatic-aminomethyl quinolone iNOS inhibitors 8 were identified. SAR studies led to identification of piperazine 22 and pyrimidine 32, both of which reduced plasma nitrates following oral dosing in a mouse lipopolysaccharide challenge assay.


Subject(s)
Enzyme Inhibitors/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Quinolones/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Models, Molecular , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , Quinolones/chemical synthesis , Quinolones/chemistry , Stereoisomerism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 21(22): 6888-94, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21986586

ABSTRACT

We have identified and synthesized a series of imidazole containing dimerization inhibitors of inducible nitric oxide synthase (iNOS). The necessity of key imidazole and piperonyl functionality was demonstrated and SAR studies led to the identification of compound 35, which showed a dose dependant inhibition in multiple pain models, including tactile allodynia induced by spinal nerve ligation (Chung model).


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Hyperalgesia/drug therapy , Imidazoles/chemistry , Imidazoles/therapeutic use , Nitric Oxide Synthase Type II/antagonists & inhibitors , Pain/drug therapy , Protein Multimerization/drug effects , Animals , Enzyme Inhibitors/pharmacology , Female , Humans , Imidazoles/pharmacology , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Inbred Lew
10.
J Pharmacol Exp Ther ; 336(2): 468-78, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21036913

ABSTRACT

Nitric oxide (NO) derived from neuronal nitric-oxide synthase (nNOS) and inducible nitric-oxide synthase (iNOS) plays a key role in various pain and inflammatory states. KLYP961 (4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one) inhibits the dimerization, and hence the enzymatic activity of human, primate, and murine iNOS and nNOS (IC(50) values 50-400 nM), with marked selectivity against endothelial nitric-oxide synthase (IC(50) >15,000 nM). It has ideal drug like-properties, including excellent rodent and primate pharmacokinetics coupled with a minimal off-target activity profile. In mice, KLYP961 attenuated endotoxin-evoked increases in plasma nitrates, a surrogate marker of iNOS activity in vivo, in a sustained manner (ED(50) 1 mg/kg p.o.). KLYP961 attenuated pain behaviors in a mouse formalin model (ED(50) 13 mg/kg p.o.), cold allodynia in the chronic constriction injury model (ED(50) 25 mg/kg p.o.), or tactile allodynia in the spinal nerve ligation model (ED(50) 30 mg/kg p.o.) with similar efficacy, but superior potency relative to gabapentin, pregabalin, or duloxetine. Unlike morphine, the antiallodynic activity of KLYP961 did not diminish upon repeated dosing. KLYP961 also attenuated carrageenin-induced edema and inflammatory hyperalgesia and writhing response elicited by phenylbenzoquinone with efficacy and potency similar to those of celecoxib. In contrast to gabapentin, KLYP961 did not impair motor coordination at doses as high as 1000 mg/kg p.o. KLYP961 also attenuated capsaicin-induced thermal allodynia in rhesus primates in a dose-related manner with a minimal effective dose (≤ 10 mg/kg p.o.) and a greater potency than gabapentin. In summary, KLYP961 represents an ideal tool with which to probe the physiological role of NO derived from iNOS and nNOS in human pain and inflammatory states.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fluoroquinolones/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Pyrazines/pharmacology , Analgesics/pharmacology , Animals , Cells, Cultured , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/toxicity , Gastrointestinal Transit/drug effects , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Motor Activity/drug effects , Protein Multimerization , Pyrazines/pharmacokinetics , Pyrazines/toxicity
11.
J Med Chem ; 53(21): 7739-55, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20931971

ABSTRACT

Three isoforms of nitric oxide synthase (NOS), dimeric enzymes that catalyze the formation of nitric oxide (NO) from arginine, have been identified. Inappropriate or excessive NO produced by iNOS and/or nNOS is associated with inflammatory and neuropathic pain. Previously, we described the identification of a series of amide-quinolinone iNOS dimerization inhibitors that although potent, suffered from high clearance and limited exposure in vivo. By conformationally restricting the amide of this progenitor series, we describe the identification of a novel series of benzimidazole-quinolinone dual iNOS/nNOS inhibitors with low clearance and sustained exposure in vivo. Compounds were triaged utilizing an LPS challenge assay coupled with mouse and rhesus pharmacokinetics and led to the identification of 4,7-imidazopyrazine 42 as the lead compound. 42 (KD7332) (J. Med. Chem. 2009, 52, 3047 - 3062) was confirmed as an iNOS dimerization inhibitor and was efficacious in the mouse formalin model of nociception and Chung model of neuropathic pain, without showing tolerance after repeat dosing. Further 42 did not affect motor coordination up to doses of 1000 mg/kg, demonstrating a wide therapeutic margin.


Subject(s)
Analgesics/chemical synthesis , Fluoroquinolones/chemical synthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Pain/drug therapy , Pyrazines/chemical synthesis , Administration, Oral , Analgesics/chemistry , Analgesics/pharmacology , Animals , Cell Line , Drug Tolerance , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Pain/etiology , Pain Measurement , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/etiology , Protein Multimerization , Pyrazines/chemistry , Pyrazines/pharmacology , Rotarod Performance Test , Structure-Activity Relationship
12.
Cytokine ; 52(3): 156-62, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20655244

ABSTRACT

A 28-day study was conducted to evaluate changes in urinary cytokine/chemokine expression levels in dogs with renal injury due to administration of cisplatin. Animals (n=17) were administered cisplatin at 0.75 mg/kg/day (i.v.) for five consecutive days. Urine/serum were collected at pre-dosing, 4h post-dosing and on days 2, 3, 4, 8, 10, 14, 16, 18, 21, 23, 25, 28 and unscheduled terminations. Animals were euthanized when serum creatinine (sCr) levels measured at ≥ 1.9 mg/dL, indicating significant loss of renal function (decreased glomerular filtration rate). Relevant clinical observations included lethargy and dehydration. Pre-study sCr levels ranged from 0.6 to 0.8 mg/dL; on days 1 through 4, sCr levels ranged from 0.5 and 1.1mg/dL; and terminal sCr levels ranged from 0.6 and 6.6 mg/dL. Histologically, cisplatin-related renal changes were characterized as proximal tubule dilatation, vacuolization, degeneration, regeneration, and interstitial inflammation. Increased interleukin (IL)-2, IL-8, monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GMCSF) and keratinocyte-derived chemokine (KC) occurred on days 3 through 4. Increased IL-7 occurred on day 4. This study showed for the first time that inflammatory cytokines/chemokines in urine positively identified acute renal tubular injury in dogs at time points earlier than sCr, a traditional marker of nephrotoxicity.


Subject(s)
Acute Kidney Injury/chemically induced , Antineoplastic Agents/toxicity , Cisplatin/toxicity , Acute Kidney Injury/physiopathology , Acute Kidney Injury/urine , Animals , Cytokines/blood , Cytokines/urine , Dogs , Glomerular Filtration Rate , Male
13.
Mol Pharmacol ; 76(1): 153-62, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19364813

ABSTRACT

Nitric-oxide synthases (NOS) generate nitric oxide (NO) through the oxidation of l-arginine. Inappropriate or excessive production of NO by NOS is associated with the pathophysiology of various disease states. Efforts to treat these disorders by developing arginine mimetic, substrate-competitive NOS inhibitors as drugs have met with little success. Small-molecule-mediated inhibition of NOS dimerization represents an intriguing alternative to substrate-competitive inhibition. An ultra-high-throughput cell-based screen of 880,000 small molecules identified a novel quinolinone with inducible NOS (iNOS) inhibitory activity. Exploratory chemistry based on this initial screening hit resulted in the synthesis of KLYP956, which inhibits iNOS at low nanomolar concentrations. The iNOS inhibitory potency of KLYP956 is insensitive to changes in concentrations of the substrate arginine, or the cofactor tetrahydrobiopterin. Mechanistic analysis suggests that KLYP956 binds the oxygenase domain in the vicinity of the active site heme and inhibits iNOS and neuronal NOS (nNOS) by preventing the formation of enzymatically active dimers. Oral administration of KLYP956 [N-(3-chlorophenyl)-N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide] inhibits iNOS activity in a murine model of endotoxemia and blocks pain behaviors in a formalin model of nociception. KLYP956 thus represents the first nonimidazole-based inhibitor of iNOS and nNOS dimerization and provides a novel pharmaceutical alternative to previously described substrate competitive inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Fluoroquinolones/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Thiazoles/pharmacology , Administration, Oral , Animals , Cells, Cultured , Dimerization , Humans , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/chemistry , Nitric Oxide Synthase Type I/chemistry , Nitric Oxide Synthase Type II/chemistry , Pain/drug therapy , Species Specificity
14.
J Med Chem ; 52(9): 3047-62, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19374401

ABSTRACT

There are three isoforms of dimeric nitric oxide synthases (NOS) that convert arginine to citrulline and nitric oxide. Inducible NOS is implicated in numerous inflammatory diseases and, more recently, in neuropathic pain states. The majority of existing NOS inhibitors are either based on the structure of arginine or are substrate competitive. We describe the identification from an ultra high-throughput screen of a novel series of quinolinone small molecule, nonarginine iNOS dimerization inhibitors. SAR studies on the screening hit, coupled with an in vivo lipopolysaccharide (LPS) challenge assay measuring plasma nitrates and drug levels, rapidly led to the identification of compounds 12 and 42--potent inhibitors of the human and mouse iNOS enzyme that were highly selective over endothelial NOS (eNOS). Following oral dosing, compounds 12 and 42 gave a statistical reduction in pain behaviors in the mouse formalin model, while 12 also statistically reduced neuropathic pain behaviors in the chronic constriction injury (Bennett) model.


Subject(s)
Drug Discovery , Fluoroquinolones/administration & dosage , Fluoroquinolones/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Pain/drug therapy , Protein Multimerization/drug effects , Pyrazines/administration & dosage , Pyrazines/pharmacology , Quinolones/administration & dosage , Quinolones/pharmacology , Administration, Oral , Animals , Cell Line , Constriction, Pathologic/chemically induced , Constriction, Pathologic/drug therapy , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fluoroquinolones/chemistry , Fluoroquinolones/therapeutic use , Formaldehyde/toxicity , Humans , Inhibitory Concentration 50 , Lipopolysaccharides/toxicity , Mice , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/metabolism , Protein Structure, Quaternary , Pyrazines/chemistry , Pyrazines/therapeutic use , Quinolones/chemistry , Quinolones/therapeutic use , Structure-Activity Relationship , Substrate Specificity
15.
Neuroreport ; 16(6): 563-6, 2005 Apr 25.
Article in English | MEDLINE | ID: mdl-15812308

ABSTRACT

The present study was designed to determine the contribution of N-type, P/Q-type and L-type calcium channels in the rostral ventromedial medulla to tactile allodynia following peripheral nerve injury. L5/L6 spinal nerve ligation in rats produced tactile allodynia, which was dose-dependently inhibited by intrarostral ventromedial medulla microinjection of the N-type calcium channel antagonist omega-conotoxin MVIIA. Similarly, intrarostral ventromedial medulla microinjection of the P/Q-type calcium channel antagonist omega-agatoxin IVA inhibited spinal nerve ligation-induced tactile allodynia, whereas intrarostral ventromedial medulla microinjection of the L-type calcium channel antagonist nimodipine had no effect. These results demonstrate that N-type and P/Q-type calcium channels in the rostral ventromedial medulla contribute to tactile allodynia following peripheral neuropathy, likely via neurotransmitter-mediated activation of descending facilitatory systems from the rostral ventromedial medulla.


Subject(s)
Calcium Channels, N-Type/physiology , Medulla Oblongata/physiology , Neuralgia/physiopathology , Animals , Calcium Channel Blockers/pharmacology , Hyperalgesia/physiopathology , Ligation , Male , Medulla Oblongata/drug effects , Microinjections , Rats , Rats, Sprague-Dawley , Spinal Nerves/physiology , Touch , omega-Agatoxin IVA/pharmacology , omega-Conotoxins/pharmacology
16.
Bioorg Med Chem Lett ; 14(5): 1295-8, 2004 Mar 08.
Article in English | MEDLINE | ID: mdl-14980685

ABSTRACT

A novel class of 6-aryl-6H-pyrrolo[3,4-d]pyridazine ligands for the alpha2delta subunit of voltage-gated calcium channels has been described. Substitutions in the aryl ring of the molecule were generally not tolerated, and resulted in diminished binding to the alpha2delta subunit. Modifications to the pyridazine ring revealed numerous permissive substitutions, and detailed SAR studies were carried out in this portion of the molecule. Replacement of the pyridazine ring methyl group with an aminomethyl functionality provided greatly improved potency over the initial lead. The initial lead compound displayed good rat pharmacokinetic properties, and was shown to be efficacious in the Chung model for neuropathic pain in rats.


Subject(s)
Calcium Channels/metabolism , Protein Subunits/metabolism , Pyridazines/chemical synthesis , Pyridazines/metabolism , Animals , Drug Evaluation, Preclinical/methods , Ligands , Pain Threshold/drug effects , Pain Threshold/physiology , Protein Binding/drug effects , Protein Binding/physiology , Rats
17.
Am J Physiol Gastrointest Liver Physiol ; 286(4): G683-91, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14615283

ABSTRACT

The mechanism(s) underlying stress-induced colonic hypersensitivity (SICH) are incompletely understood. Our aims were to assess the acute and delayed (24 h) effect of water avoidance (WA) stress on visceral nociception in awake male Wistar rats and to evaluate the role of two stress-related modulation systems: the substance P/neurokinin-1 receptor (SP/NK(1)R) and the corticotropin-releasing factor (CRF)/CRF(1) receptor (CRF/CRF(1)R) systems, as well as the possible involvement of the sympathetic nervous system. Visceral pain responses were measured as the visceromotor response to colorectal distension (CRD) at baseline, immediately after WA and again 24 h later. The NK(1)R antagonists RP-67580 and SR-140333 and the CRF(1)R antagonist CP-154526 were injected 15 min before WA or 1 h before the CRD on day 2. Chemical sympathectomy was performed by repeated injection of 6-hydroxydopamine. WA stress resulted in a significant increase in the visceromotor response on day 2, but no change immediately after WA. Injection of CP-154526 abolished delayed SICH when applied either before WA stress or before the CRD on day 2. Both NK(1)R antagonists only decreased SICH when injected before the CRD on day 2. Chemical sympathectomy did not affect delayed SICH. Our results indicate that in male Wistar rats, both NK(1)R and CRF(1)R activation, but not sympathetic nervous system activation, play a role in the development of SICH.


Subject(s)
Colon/physiopathology , Hypersensitivity, Delayed/physiopathology , Receptors, Corticotropin-Releasing Hormone/physiology , Receptors, Neurokinin-1/physiology , Animals , Colon/innervation , Electromyography , Fear/physiology , Immunohistochemistry , Indoles/pharmacology , Isoindoles , Male , Muscle, Smooth/innervation , Muscle, Smooth/physiology , Neurokinin-1 Receptor Antagonists , Nociceptors/physiology , Physical Stimulation , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Quinuclidines/pharmacology , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Stress, Psychological/physiopathology , Sympathectomy, Chemical , Sympathetic Nervous System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...