Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Calcium ; 119: 102871, 2024 May.
Article in English | MEDLINE | ID: mdl-38537434

ABSTRACT

The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca2+ sensors that trigger store-operated Ca2+ entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca2+ imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the ISOC current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca2+ store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the ISOC current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca2+ cycling, we observed, using Rhod-2/AM Ca2+ imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca2+ (mCa2+) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IP3Rs), voltage-dependent anion channel (VDAC), mitochondrial Ca2+ uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa2+ uptake capacity possibly via the STIM2-IP3Rs-VDAC-MCU and MNF2 complex.


Subject(s)
Calcium , Myocytes, Cardiac , Stromal Interaction Molecule 1 , Animals , Rats , Biological Transport , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Homeostasis , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L246-L261, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37366608

ABSTRACT

Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Transient Receptor Potential Channels , Humans , Rats , Animals , Transient Receptor Potential Channels/metabolism , Pulmonary Arterial Hypertension/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Hypertension, Pulmonary/pathology , Pulmonary Artery/metabolism , Myocytes, Smooth Muscle/metabolism , Calcium/metabolism
3.
Cells ; 11(20)2022 10 18.
Article in English | MEDLINE | ID: mdl-36291148

ABSTRACT

Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.


Subject(s)
Hypertension, Pulmonary , Ventricular Dysfunction, Right , Male , Humans , Heart Ventricles/pathology , Ventricular Remodeling/physiology , Myocytes, Cardiac/pathology
4.
Circ Res ; 131(9): e102-e119, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36164973

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS: Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS: Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS: In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.


Subject(s)
Aniline Compounds , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Thiadiazoles , Animals , Humans , Rats , Aniline Compounds/therapeutic use , Calcineurin/metabolism , Calcium/metabolism , Cell Proliferation/genetics , Cells, Cultured , Hypertension, Pulmonary/drug therapy , Hypoxia/metabolism , MAP Kinase Kinase 1/metabolism , Monocrotaline/toxicity , Myocytes, Smooth Muscle/metabolism , ORAI1 Protein , Pulmonary Artery/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Thiadiazoles/metabolism
5.
Front Cardiovasc Med ; 9: 1066047, 2022.
Article in English | MEDLINE | ID: mdl-36704469

ABSTRACT

Aims: We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results: Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion: We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.

6.
Front Cell Dev Biol ; 8: 586109, 2020.
Article in English | MEDLINE | ID: mdl-33117812

ABSTRACT

The archetypal store-operated Ca2+ channels (SOCs), Orai1, which are stimulated by the endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor stromal interaction molecule 1 (STIM1) upon Ca2+ store depletion is traditionally viewed as instrumental for the function of non-excitable cells. In the recent years, expression and function of Orai1 have gained recognition in excitable cardiomyocytes, albeit controversial. Even if its cardiac physiological role in adult is still elusive and needs to be clarified, Orai1 contribution in cardiac diseases such as cardiac hypertrophy and heart failure (HF) is increasingly recognized. The present review surveys our current arising knowledge on the new role of Orai1 channels in the heart and debates on its participation to cardiac hypertrophy and HF.

8.
Circulation ; 141(3): 199-216, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31906693

ABSTRACT

BACKGROUND: Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. METHODS: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. RESULTS: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. CONCLUSIONS: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.


Subject(s)
Calcium Signaling , Calcium/metabolism , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , ORAI1 Protein/antagonists & inhibitors , ORAI1 Protein/metabolism , Ventricular Function, Left , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Focal Adhesion Kinase 2/genetics , Focal Adhesion Kinase 2/metabolism , Mice , Mice, Transgenic , Myocytes, Cardiac/pathology , ORAI1 Protein/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
9.
Arch Cardiovasc Dis ; 113(1): 70-84, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31924541

ABSTRACT

Pulmonary arterial hypertension is a progressive and lethal cardiopulmonary disease. The rise in right ventricular afterload leads to right ventricular hypertrophy and failure. Right ventricular failure is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension or pulmonary hypertension caused by left heart diseases. Surprisingly, the right ventricle is not targeted by pulmonary arterial hypertension-specific therapies. The current profound lack of basic understanding of pulmonary arterial hypertension-related right ventricular remodelling can explain, at least in part, this paradox. The physiology and haemodynamic function of the right ventricle in the normal state differ considerably from those of the left ventricle, and the known mechanisms of left ventricular dysfunction cannot be generalized to right ventricular dysfunction. Ion channel activities and calcium homeostasis tightly regulate cardiac function, and their dysfunction contributes to the pathogenesis of cardiac diseases. This review focuses on the ion channels (potassium, calcium) and intracellular calcium handling remodelling involved in right ventricular hypertrophy and dysfunction caused by pulmonary arterial hypertension.


Subject(s)
Excitation Contraction Coupling , Heart Ventricles/physiopathology , Hypertrophy, Right Ventricular/etiology , Myocardial Contraction , Pulmonary Arterial Hypertension/complications , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right , Ventricular Remodeling , Action Potentials , Animals , Arterial Pressure , Calcium/metabolism , Disease Models, Animal , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Rate , Heart Ventricles/metabolism , Humans , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Potassium/metabolism , Prognosis , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Artery/physiopathology , Risk Factors , Translational Research, Biomedical , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/physiopathology
10.
Cells ; 9(1)2019 12 23.
Article in English | MEDLINE | ID: mdl-31878108

ABSTRACT

Whereas cardiac TRPC (transient receptor potential canonical) channels and the associated store-operated Ca2+ entry (SOCE) are abnormally elevated during cardiac hypertrophy and heart failure, the mechanism of this upregulation is not fully elucidated but might be related to the activation of the mineralocorticoid pathway. Using a combination of biochemical, Ca2+ imaging, and electrophysiological techniques, we determined the effect of 24-h aldosterone treatment on the TRPCs/Orai-dependent SOCE in adult rat ventricular cardiomyocytes (ARVMs). The 24-h aldosterone treatment (from 100 nM to 1 µM) enhanced depletion-induced Ca2+ entry in ARVMs, as assessed by a faster reduction of Fura-2 fluorescence decay upon the addition of Mn2+ and increased Fluo-4/AM fluorescence following Ca2+ store depletion. These effects were prevented by co-treatment with a specific mineralocorticoid receptor (MR) antagonist, RU-28318, and they are associated with the enhanced depletion-induced N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2)-sensitive macroscopic current recorded by patch-clamp experiments. Molecular screening by qRT-PCR and Western blot showed a specific upregulation of TRPC1, TRPC5, and STIM1 expression at the messenger RNA (mRNA) and protein levels upon 24-h aldosterone treatment of ARVMs, corroborated by immunostaining. Our study provides evidence that the mineralocorticoid pathway specifically promotes TRPC1/TRPC5-mediated SOCE in adult rat cardiomyocytes.


Subject(s)
Myocytes, Cardiac/metabolism , TRPC Cation Channels/metabolism , Aldosterone/pharmacology , Animals , Calcium/metabolism , Calcium Signaling , Cell Membrane/metabolism , Mineralocorticoids/metabolism , Myocytes, Cardiac/pathology , Rats
11.
Circulation ; 139(7): 932-948, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30586714

ABSTRACT

BACKGROUND: Monoallelic mutations in the gene encoding bone morphogenetic protein receptor 2 ( Bmpr2) are the main genetic risk factor for heritable pulmonary arterial hypertension (PAH) with incomplete penetrance. Several Bmpr2 transgenic mice have been reported to develop mild spontaneous PAH. In this study, we examined whether rats with the Bmpr2 mutation were susceptible to developing more severe PAH. METHODS: The zinc finger nuclease method was used to establish rat lines with mutations in the Bmpr2 gene. These rats were then characterized at the hemodynamic, histological, electrophysiological, and molecular levels. RESULTS: Rats with a monoallelic deletion of 71 bp in exon 1 (Δ 71 rats) showed decreased BMPRII expression and phosphorylated SMAD1/5/9 levels. Δ 71 Rats develop age-dependent spontaneous PAH with a low penetrance (16%-27%), similar to that in humans. Δ 71 Rats were more susceptible to hypoxia-induced pulmonary hypertension than wild-type rats. Δ 71 Rats exhibited progressive pulmonary vascular remodeling associated with a proproliferative phenotype and showed lower pulmonary microvascular density than wild-type rats. Organ bath studies revealed severe alteration of pulmonary artery contraction and relaxation associated with potassium channel subfamily K member 3 (KCNK3) dysfunction. High levels of perivascular fibrillar collagen and pulmonary interleukin-6 overexpression discriminated rats that developed spontaneous PAH and rats that did not develop spontaneous PAH. Finally, detailed assessments of cardiomyocytes demonstrated alterations in morphology, calcium (Ca2+), and cell contractility specific to the right ventricle; these changes could explain the lower cardiac output of Δ 71 rats. Indeed, adult right ventricular cardiomyocytes from Δ 71 rats exhibited a smaller diameter, decreased sensitivity of sarcomeres to Ca2+, decreased [Ca2+] transient amplitude, reduced sarcoplasmic reticulum Ca2+ content, and short action potential duration compared with right ventricular cardiomyocytes from wild-type rats. CONCLUSIONS: We characterized the first Bmpr2 mutant rats and showed some of the critical cellular and molecular dysfunctions described in human PAH. We also identified the heart as an unexpected but potential target organ of Bmpr2 mutations. Thus, this new genetic rat model represents a promising tool to study the pathogenesis of PAH.


Subject(s)
Arterial Pressure/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Mutation , Myocardial Contraction/genetics , Pulmonary Artery/physiopathology , Ventricular Function, Right/genetics , Action Potentials , Animals , Bone Morphogenetic Protein Receptors, Type II/metabolism , Calcium Signaling , Disease Models, Animal , Genetic Predisposition to Disease , Hypertension, Pulmonary/metabolism , Hypoxia/complications , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Phenotype , Phosphorylation , Potassium Channels, Tandem Pore Domain/metabolism , Pulmonary Artery/metabolism , Rats, Mutant Strains , Smad Proteins/metabolism
12.
Int J Mol Sci ; 19(10)2018 Oct 14.
Article in English | MEDLINE | ID: mdl-30322215

ABSTRACT

Pulmonary arterial hypertension (PAH) is a multifactorial and severe disease without curative therapies. PAH pathobiology involves altered pulmonary arterial tone, endothelial dysfunction, distal pulmonary vessel remodeling, and inflammation, which could all depend on ion channel activities (K⁺, Ca2+, Na⁺ and Cl-). This review focuses on ion channels in the pulmonary vasculature and discusses their pathophysiological contribution to PAH as well as their therapeutic potential in PAH.


Subject(s)
Hypertension, Pulmonary/metabolism , Ion Channels/metabolism , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Gene Expression Regulation/drug effects , Humans , Hypertension, Pulmonary/drug therapy
13.
J Mol Cell Cardiol ; 118: 208-224, 2018 05.
Article in English | MEDLINE | ID: mdl-29634917

ABSTRACT

BACKGROUND: Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca2+ remodeling. METHODS AND RESULTS: After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca2+]i transients and increased sarcoplasmic reticulum (SR) Ca2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser16-phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca2+-ATPase) pump abundance. Moreover, after PH induction, Ca2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca2+-release-activated Ca2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca2+]i transients amplitude, the SR Ca2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. CONCLUSIONS: These new findings demonstrate RV-specific cellular Ca2+ cycling remodeling in PH rats with maladaptive RVH and that the STIM1L/Orai1/TRPC1/C4-dependent Ca2+ current participates in this Ca2+ remodeling in RVH secondary to PH.


Subject(s)
Calcium Signaling , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , TRPC Cation Channels/metabolism , Up-Regulation , Animals , Calcium/metabolism , Calcium Channels/metabolism , Capillaries/pathology , Fibrosis , Glycosylation , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Inflammation/complications , Inflammation/pathology , Monocrotaline , Myocytes, Cardiac/metabolism , Protein Isoforms/metabolism , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
14.
Circ Res ; 122(7): e49-e61, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29467196

ABSTRACT

RATIONALE: The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca2+ channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts. OBJECTIVE: To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner. METHODS AND RESULTS: In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca2+ channel blocker, nifedipine, in aldosterone-treated vessels. CONCLUSIONS: Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.


Subject(s)
Calcium Channels, L-Type/metabolism , Myocytes, Cardiac/metabolism , Promoter Regions, Genetic , Receptors, Mineralocorticoid/metabolism , Transcriptional Activation , Aldosterone/pharmacology , Animals , Calcium Channels, L-Type/genetics , Cells, Cultured , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Rats, Wistar
15.
Adv Exp Med Biol ; 993: 523-534, 2017.
Article in English | MEDLINE | ID: mdl-28900931

ABSTRACT

For a long time, Ca2+ entry into cardiomyocytes was considered the sole domain of the L-type Ca2+ channel. Recently, STIM1/Orai1-mediated store-operated Ca2+ entry has been also reported to participate to Ca2+ influx in cardiac cells and has emerged as a key player to alter Ca2+ in the cardiomyocyte. In this review, we will highlight accumulated knowledge about the presence and the potential contribution of STIM1/Orai1-dependent SOCE to cardiac function and its role in the cardiac pathogenesis. Overall, even if STIM1/Orai1 proteins are present in the heart, contradictory results have been reported regarding their contribution to cardiac physiology and pathology, pointing out the necessity of further investigations, a major challenge over the coming years.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Heart Diseases/metabolism , Heart/physiology , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Animals , Humans
16.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1631-1641, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28655554

ABSTRACT

Idiopathic pulmonary arterial hypertension (iPAH) is characterized by obstructive hyperproliferation and apoptosis resistance of distal pulmonary artery smooth muscle cells (PASMCs). T-type Ca2+ channel blockers have been shown to reduce experimental pulmonary hypertension, although the impact of T-type channel inhibition remains unexplored in PASMCs from iPAH patients. Here we show that T-type channels Cav3.1 and Cav3.2 are present in the lung and PASMCs from iPAH patients and control subjects. The blockade of T-type channels by the specific blocker, TTA-A2, prevents cell cycle progression and PASMCs growth. In iPAH cells, T-type channel signaling fails to activate phosphatase PP2A, leading to an increase in ERK1/2, P38 activation. Moreover, T-type channel signaling is redirected towards the activation of the kinase Akt1, leading to increased expression of the anti-apoptotic protein survivin, and a decrease in the pro-apoptotic mediator FoxO3A. Finally, in iPAH cells, Akt1 is no longer able to regulate caspase 9 activation, whereas T-type channel overexpression reverses PP2A defect in iPAH cells but reinforces the deleterious effects of Akt1 activation. Altogether, these data highlight T-type channel signaling as a strong trigger of the pathological phenotype of PASMCs from iPAH patients (hyper-proliferation/cells survival and apoptosis resistance), suggesting that both T-type channels and PP2A may be promising therapeutic targets for pulmonary hypertension.


Subject(s)
Calcium Channels, T-Type/genetics , Familial Primary Pulmonary Hypertension/metabolism , Protein Phosphatase 2/genetics , Proto-Oncogene Proteins c-akt/genetics , Apoptosis/genetics , Benzeneacetamides/pharmacology , Cell Proliferation/genetics , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Forkhead Box Protein O3/genetics , Gene Expression Regulation/drug effects , Humans , Myocytes, Smooth Muscle/metabolism , Protein Phosphatase 2/metabolism , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pyridines/pharmacology , Signal Transduction/drug effects
17.
J Physiol ; 595(13): 4227-4243, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28374413

ABSTRACT

KEY POINTS: Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca2+ handling parameters. ABSTRACT: Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg-1  day-1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca2+ ]i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca2+ waves. These proarrhythmic manifestations, related to Ca2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level.


Subject(s)
Aortic Valve Stenosis/drug therapy , Cardiotonic Agents/pharmacology , Leptin/pharmacology , Myocytes, Cardiac/drug effects , Action Potentials , Animals , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiotonic Agents/therapeutic use , Cells, Cultured , Kv Channel-Interacting Proteins/genetics , Kv Channel-Interacting Proteins/metabolism , Leptin/therapeutic use , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism
18.
Biochim Biophys Acta Mol Cell Res ; 1864(5): 806-813, 2017 May.
Article in English | MEDLINE | ID: mdl-28185894

ABSTRACT

STIM1 and Orai1 are essential players of store-operated Ca2+ entry (SOCE) in human skeletal muscle cells and are required for adult muscle differentiation. Besides these two proteins, TRPC (transient receptor potential canonical) channels and STIM1L (a longer STIM1 isoform) are also present on muscle cells. In the present study, we assessed the role of TRPC1, TRPC4 and STIM1L in SOCE, in the maintenance of repetitive Ca2+ transients and in muscle differentiation. Knockdown of TRPC1 and TRPC4 reduced SOCE by about 50% and significantly delayed the onset of Ca2+ entry, both effects similar to STIM1L invalidation. Upon store depletion, TRPC1 and TRPC4 appeared to interact preferentially with STIM1L compared to STIM1. STIM1L invalidation affected myoblast differentiation, with the formation of smaller myotubes, an effect similar to what we reported for TRPC1 and TRPC4 knockdown. On the contrary, the overexpression of STIM1L leads to the formation of larger myotubes. All together, these data strongly suggest that STIM1L and TRPC1/4 are working together in myotubes to ensure efficient store refilling and a proper differentiation program.


Subject(s)
Calcium Signaling , Muscle Development/physiology , Muscle Fibers, Skeletal/physiology , Neoplasm Proteins/metabolism , Stromal Interaction Molecule 1/metabolism , TRPC Cation Channels/metabolism , Animals , Calcium/metabolism , Cell Differentiation , Cells, Cultured , Child, Preschool , Humans , Mice , Muscle Fibers, Skeletal/metabolism , Neoplasm Proteins/chemistry , Protein Binding , Protein Isoforms/metabolism , Stromal Interaction Molecule 1/chemistry
19.
J Mol Endocrinol ; 57(3): F35-F39, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27589991

ABSTRACT

Normal plasma glucose level is ensured by the action of insulin, the major hypoglycemic hormone. Therefore, it is not surprising that insulin release from pancreatic ß-cells of the islets of Langerhans is controlled by an array of balanced mechanisms in which glucose plays the leading role. Glucose triggers insulin secretion through the well-described pathway of ATP-driven closure of ATP-sensitive potassium channels (KATP), depolarization of the plasma membrane, and opening of the voltage-dependent Ca2+ channels (VDCC). The subsequent rapid rise in cytoplasmic free Ca2+ concentration triggers insulin exocytosis. However, despite more than 40 years of investigation, certain aspects of the intracellular Ca2+ responses to glucose and secretagogues remain unexplained, suggesting the involvement of additional Ca2+ channels. Here, we discuss the emerging role of store-operated Ca2+ channels carried by Orai1 and transient receptor potential canonical 1 (TRPC1) proteins and regulated by the stromal interaction molecule 1 (STIM1) in the control of glucose-induced insulin secretion. The role of other voltage-independent cation channels formed by other members of the TRP channels family is also addressed.

20.
J Biol Chem ; 291(25): 13394-409, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27129253

ABSTRACT

Store-operated Ca(2+) entry (SOCE) has emerged as an important mechanism in cardiac pathology. However, the signals that up-regulate SOCE in the heart remain unexplored. Clinical trials have emphasized the beneficial role of mineralocorticoid receptor (MR) signaling blockade in heart failure and associated arrhythmias. Accumulated evidence suggests that the mineralocorticoid hormone aldosterone, through activation of its receptor, MR, might be a key regulator of Ca(2+) influx in cardiomyocytes. We thus assessed whether and how SOCE involving transient receptor potential canonical (TRPC) and Orai1 channels are regulated by aldosterone/MR in neonatal rat ventricular cardiomyocytes. Molecular screening using qRT-PCR and Western blotting demonstrated that aldosterone treatment for 24 h specifically increased the mRNA and/or protein levels of Orai1, TRPC1, -C4, -C5, and stromal interaction molecule 1 through MR activation. These effects were correlated with a specific enhancement of SOCE activities sensitive to store-operated channel inhibitors (SKF-96365 and BTP2) and to a potent Orai1 blocker (S66) and were prevented by TRPC1, -C4, and Orai1 dominant negative mutants or TRPC5 siRNA. A mechanistic approach showed that up-regulation of serum- and glucocorticoid-regulated kinase 1 mRNA expression by aldosterone is involved in enhanced SOCE. Functionally, 24-h aldosterone-enhanced SOCE is associated with increased diastolic [Ca(2+)]i, which is blunted by store-operated channel inhibitors. Our study provides the first evidence that aldosterone promotes TRPC1-, -C4-, -C5-, and Orai1-mediated SOCE in cardiomyocytes through an MR and serum- and glucocorticoid-regulated kinase 1 pathway.


Subject(s)
Aldosterone/physiology , Calcium Channels/physiology , Myocytes, Cardiac/metabolism , TRPC Cation Channels/metabolism , Aldosterone/pharmacology , Anilides/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Calcium Signaling , Cells, Cultured , Gene Expression , Gene Expression Regulation , Imidazoles/pharmacology , Immediate-Early Proteins/metabolism , Membrane Glycoproteins/metabolism , ORAI1 Protein , Protein Multimerization , Protein Serine-Threonine Kinases/metabolism , Rats, Wistar , Stromal Interaction Molecule 1 , TRPC Cation Channels/genetics , Thiadiazoles/pharmacology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...