Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Type of study
Language
Publication year range
1.
Microb Ecol ; 81(2): 335-346, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32880700

ABSTRACT

To elucidate the individual and multiple roles of physiological bacterial groups involved in biogeochemical cycles of carbon, nitrogen, phosphorus and sulfur, the changes in the abundance of aerobic bacteria (heterotrophs, methane oxidizers, ammonia oxidizers, sulfur oxidizers, phosphate solubilizers, phosphate accumulators) and anaerobic bacteria (total anaerobes, nitrate reducers, denitrifiers and sulfate reducers) were investigated in a biosecured, zero-exchange system stocked with whiteleg shrimp, Litopenaeus vannamei for one production cycle. Key water quality parameters during the 96-day production cycle fell within the normal range for L. vannamei culture. Results of Spearman's correlation matrix revealed that different sets of variables correlated at varying levels of significance of the interrelationships between bacterial abundances and water quality parameters. The three nitrogenous species (ammonia, nitrite and nitrate) strongly influenced the physiological bacterial groups' abundance. The strong relationship of bacterial groups with phytoplankton biomass and abundance clearly showed the trophic interconnections in nutrient exchange/recycling. Canonical correspondence analysis performed to assess the total variation revealed that the three dissolved nitrogen species followed by salinity, temperature, phytoplankton biomass and pH collectively accounted for as much as 82% of the total variation. In conclusion, the results of the study revealed that the major drivers that interweaved biogeochemical cycles are the three dissolved nitrogen species, which microbially mediated various aerobic-anaerobic assimilation/dissimilation processes in the pond ecosystem. Considering the pond microbial ecology becoming an important management tool where applied research could improve the economic and environmental sustainability of the aquaculture industry, the findings of the present study are practically relevant.


Subject(s)
Bacterial Physiological Phenomena , Ecosystem , Penaeidae/growth & development , Aerobiosis , Anaerobiosis , Animals , Aquaculture , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Nitrogen/analysis , Nitrogen/chemistry , Phytoplankton/classification , Phytoplankton/genetics , Phytoplankton/metabolism , Ponds/chemistry , Ponds/microbiology , Water Quality
2.
Braz J Microbiol ; 46(1): 29-39, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26221086

ABSTRACT

Awareness on antioxidants and its significance in human healthcare has increased many folds in recent time. Increased demand requisite on welcoming newer and alternative resources for natural antioxidants. Seaweed associated pigmented bacteria screened for its antioxidant potentials reveals 55.5% of the organisms were able to synthesize antioxidant compounds. DPPH assay showed 20% of the organisms to reach a antioxidant zone of 1 cm and 8.3% of the strains more than 3 cm. Pseudomonas koreensis (JX915782) a Sargassum associated yellowish brown pigmented bacteria have better activity than known commercial antioxidant butylated hydroxytoluene (BHT) against DPPH scavenging. Serratia rubidaea (JX915783), an associate of Ulva sp. and Pseudomonas argentinensis (JX915781) an epiphyte of Chaetomorpha media , were also contributed significantly towards ABTS (7.2% ± 0.03 to 15.2 ± 0.09%; 1.8% ± 0.01 to 15.7 ± 0.22%) and FRAP (1.81 ± 0.01 to 9.35 ± 0.98; 7.97 ± 0.12 to 18.70 ± 1.84 µg/mL of AsA Eq.) respectively. 16S rRNA gene sequence analysis revealed bacteria that have higher antioxidant activity belongs to a bacterial class Gammaproteobacteria. Statistical analysis of phenolic contents in relation with other parameters like DPPH, ABTS, reducing power and FRAP are well correlated (p < 0.05). Results obtained from the current study inferred that the seaweed associated pigmented bacteria have enormous potential on antioxidant compounds and need to be extracted in a larger way for clinical applications.


Subject(s)
Antioxidants/metabolism , Aquatic Organisms/classification , Aquatic Organisms/metabolism , Gammaproteobacteria/classification , Gammaproteobacteria/metabolism , Seaweed/microbiology , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Molecular Sequence Data , Pigments, Biological/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Braz. j. microbiol ; 46(1): 29-39, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748236

ABSTRACT

Awareness on antioxidants and its significance in human healthcare has increased many folds in recent time. Increased demand requisite on welcoming newer and alternative resources for natural antioxidants. Seaweed associated pigmented bacteria screened for its antioxidant potentials reveals 55.5% of the organisms were able to synthesize antioxidant compounds. DPPH assay showed 20% of the organisms to reach a antioxidant zone of 1 cm and 8.3% of the strains more than 3 cm. Pseudomonas koreensis (JX915782) a Sargassum associated yellowish brown pigmented bacteria have better activity than known commercial antioxidant butylated hydroxytoluene (BHT) against DPPH scavenging. Serratia rubidaea (JX915783), an associate of Ulva sp. and Pseudomonas argentinensis (JX915781) an epiphyte of Chaetomorpha media, were also contributed significantly towards ABTS (7.2% ± 0.03 to 15.2 ± 0.09%; 1.8% ± 0.01 to 15.7 ± 0.22%) and FRAP (1.81 ± 0.01 to 9.35 ± 0.98; 7.97 ± 0.12 to 18.70 ± 1.84 μg/mL of AsA Eq.) respectively. 16S rRNA gene sequence analysis revealed bacteria that have higher antioxidant activity belongs to a bacterial class Gammaproteobacteria. Statistical analysis of phenolic contents in relation with other parameters like DPPH, ABTS, reducing power and FRAP are well correlated (p < 0.05). Results obtained from the current study inferred that the seaweed associated pigmented bacteria have enormous potential on antioxidant compounds and need to be extracted in a larger way for clinical applications.


Subject(s)
Antioxidants/metabolism , Aquatic Organisms/classification , Aquatic Organisms/metabolism , Gammaproteobacteria/classification , Gammaproteobacteria/metabolism , Seaweed/microbiology , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Molecular Sequence Data , Pigments, Biological/metabolism , /genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL