Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36901963

ABSTRACT

The bactericidal effects of inhalable ciprofloxacin (CIP) loaded-poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) with traces of zinc oxide (ZnO) were investigated against clinical strains of the respiratory pathogens Staphylococcus aureus and Pseudomonas aeruginosa. CIP-loaded PEtOx NPs retained their bactericidal activity within the formulations compared to free CIP drugs against these two pathogens, and bactericidal effects were enhanced with the inclusion of ZnO. PEtOx polymer and ZnO NPs did not show bactericidal activity alone or in combination against these pathogens. The formulations were tested to determine the cytotoxic and proinflammatory effects on airway epithelial cells derived from healthy donors (NHBE), donors with chronic obstructive pulmonary disease (COPD, DHBE), and a cell line derived from adults with cystic fibrosis (CFBE41o-) and macrophages from healthy adult controls (HCs), and those with either COPD or CF. NHBE cells demonstrated maximum cell viability (66%) against CIP-loaded PEtOx NPs with the half maximal inhibitory concentration (IC50) value of 50.7 mg/mL. CIP-loaded PEtOx NPs were more toxic to epithelial cells from donors with respiratory diseases than NHBEs, with respective IC50 values of 0.103 mg/mL for DHBEs and 0.514 mg/mL for CFBE41o- cells. However, high concentrations of CIP-loaded PEtOx NPs were toxic to macrophages, with respective IC50 values of 0.002 mg/mL for HC macrophages and 0.021 mg/mL for CF-like macrophages. PEtOx NPs, ZnO NPs, and ZnO-PEtOx NPs with no drug were not cytotoxic to any cells investigated. The in vitro digestibility of PEtOx and its NPs was investigated in simulated lung fluid (SLF) (pH 7.4). The analysed samples were characterized using Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Digestion of PEtOx NPs commenced one week following incubation and was completely digested after four weeks; however, the original PEtOx was not digested after six weeks of incubation. The outcome of this study revealed that PEtOx polymer could be considered an efficient drug delivery carrier in respiratory linings, and CIP-loaded PEtOx NPs with traces of ZnO could be a promising addition to inhalable treatments against resistant bacteria with reduced toxicity.


Subject(s)
Metal Nanoparticles , Nanoparticles , Pulmonary Disease, Chronic Obstructive , Zinc Oxide , Humans , Ciprofloxacin/pharmacology , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests
2.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36297335

ABSTRACT

In this study, the stability of ciprofloxacin (CIP)-loaded poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) was investigated at normal and high stressed conditions. The blank NPs were used to understand the intrinsic physicochemical properties of the polymer NPs under these storage conditions. The formulated NPs were prepared by a coassembly reaction and dried by lyophilization. The powder NPs were stored at controlled room temperature (25 °C) with normal relative humidity (RH) (43%) and high temperature (40 °C) and RH (75%). The stored samples were analyzed by determining the particle sizes, morphology, solid-state properties, thermal behavior, drug-polymer interactions, and aerosol performances over six months. The chemical stability of the formulations was determined by X-ray diffraction, attenuated total refection-Fourier transform infrared (ATR-FTIR), and high-performance liquid chromatography (HPLC) over six months under both conditions. The particle size of the blank PEtOx NPs significantly (p < 0.05) increased from 195.4 nm to 202.7 nm after 3 months at 40 °C/75% RH due to the moisture absorption from high RH; however, no significant increase was observed afterward. On the other hand, the sizes of CIP-loaded PEtOx NPs significantly (p < 0.05) reduced from 200.2 nm to 126.3 nm after 6 months at 40 °C/75% RH. In addition, the scanning electron microscopy (SEM) images revealed that the surfaces of CIP-loaded PEtOx NPs become smoother after 3 months of storage due to the decay of surface drugs compared to the freshly prepared NPs. However, transmission electron microscopy (TEM) images could not provide much information on drug decay from the nanoparticle's surfaces. The fine particle fraction (FPF) of CIP-loaded PEtOx NPs dropped significantly (p < 0.05) after three months at 25 °C/43% RH and 40 °C/75% RH conditions. The reduced FPF of CIP-loaded PEtOx NPs occurred due to the drug decay from the polymeric surface and blank PEtOx NPs due to the aggregations of the NPs at high temperatures and RH. Although the aerosolization properties of the prepared CIP-loaded PEtOx NPs were reduced, all formulations were chemically stable in the experimental conditions.

3.
PLoS One ; 16(12): e0261720, 2021.
Article in English | MEDLINE | ID: mdl-34941946

ABSTRACT

Lower respiratory tract infections (LRTIs) are one of the fatal diseases of the lungs that have severe impacts on public health and the global economy. The currently available antibiotics administered orally for the treatment of LRTIs need high doses with frequent administration and cause dose-related adverse effects. To overcome this problem, we investigated the development of ciprofloxacin (CIP) loaded poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) for potential pulmonary delivery from dry powder inhaler (DPI) formulations against LRTIs. NPs were prepared using a straightforward co-assembly reaction carried out by the intermolecular hydrogen bonding among PEtOx, tannic acid (TA), and CIP. The prepared NPs were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (PXRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The CIP was determined by validated HPLC and UV spectrophotometry methods. The CIP loading into the PEtOx was between 21-67% and increased loading was observed with the increasing concentration of CIP. The NP sizes of PEtOx with or without drug loading were between 196-350 nm and increased with increasing drug loading. The in vitro CIP release showed the maximum cumulative release of about 78% in 168 h with a burst release of 50% in the first 12 h. The kinetics of CIP release from NPs followed non-Fickian or anomalous transport thus suggesting the drug release was regulated by both diffusion and polymer degradation. The in vitro aerosolization study carried out using a Twin Stage Impinger (TSI) at 60 L/min air flow showed the fine particle fraction (FPF) between 34.4% and 40.8%. The FPF was increased with increased drug loading. The outcome of this study revealed the potential of the polymer PEtOx as a carrier for developing CIP-loaded PEtOx NPs as DPI formulation for pulmonary delivery against LRTIs.


Subject(s)
Ciprofloxacin , Drug Carriers , Nanoparticles/chemistry , Polyamines , Administration, Inhalation , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Dry Powder Inhalers , Humans , Polyamines/chemistry , Polyamines/pharmacokinetics
4.
Int J Pharm ; 608: 121122, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34560207

ABSTRACT

Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.


Subject(s)
Blood Coagulation Disorders/drug therapy , COVID-19 , Dry Powder Inhalers , Pyridines/administration & dosage , Thiazoles/administration & dosage , Administration, Inhalation , Aerosols , Blood Coagulation Disorders/virology , COVID-19/complications , Humans , Particle Size , Powders
SELECTION OF CITATIONS
SEARCH DETAIL
...