Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 581: 116-127, 2023 04.
Article in English | MEDLINE | ID: mdl-36958216

ABSTRACT

Mastomys natalensis-borne mammarenaviruses appear specific to subspecific M. natalensis taxa rather than to the whole species. Yet mammarenaviruses carried by M. natalensis are known to spill over and jump hosts in northern sub-Saharan Africa. Phylogeographic studies increasingly show that, like M. natalensis, small mammals in sub-Saharan Africa are often genetically structured into several subspecific taxa. Other mammarenaviruses may thus also form virus-subspecific host taxon associations. To investigate this, and if mammarenaviruses carried by M. natalensis in southern Africa are less prone to spill-over, we screened 1225 non-M. natalensis samples from Tanzania where many small mammal taxa meet. We found mammarenavirus RNA in 6 samples. Genetic/genomic characterisation confirmed they were not spill-over from M. natalensis. We detected host jumps among rodent tribe members and an association between mammarenaviruses and subspecific taxa of Mus minutoides and Grammomys surdaster, indicating host genetic structure may be crucial to understand virus distribution and host specificity.


Subject(s)
Arenaviridae , Rodent Diseases , Animals , Arenaviridae/genetics , Host Specificity , Murinae , Phylogeography , Tanzania
2.
J Anim Ecol ; 89(2): 506-518, 2020 02.
Article in English | MEDLINE | ID: mdl-31545505

ABSTRACT

A key aim in wildlife disease ecology is to understand how host and parasite characteristics influence parasite transmission and persistence. Variation in host population density can have strong impacts on transmission and outbreaks, and theory predicts particular transmission-density patterns depending on how parasites are transmitted between individuals. Here, we present the results of a study on the dynamics of Morogoro arenavirus in a population of multimammate mice (Mastomys natalensis). This widespread African rodent, which is also the reservoir host of Lassa arenavirus in West Africa, is known for its strong seasonal density fluctuations driven by food availability. We investigated to what degree virus transmission changes with host population density and how the virus might be able to persist during periods of low host density. A seven-year capture-mark-recapture study was conducted in Tanzania where rodents were trapped monthly and screened for the presence of antibodies against Morogoro virus. Observed seasonal seroprevalence patterns were compared with those generated by mathematical transmission models to test different hypotheses regarding the degree of density dependence and the role of chronically infected individuals. We observed that Morogoro virus seroprevalence correlates positively with host density with a lag of 1-4 months. Model results suggest that the observed seasonal seroprevalence dynamics can be best explained by a combination of vertical and horizontal transmission and that a small number of animals need to be infected chronically to ensure viral persistence. Transmission dynamics and viral persistence were best explained by the existence of both acutely and chronically infected individuals and by seasonally changing transmission rates. Due to the presence of chronically infected rodents, rodent control is unlikely to be a feasible approach for eliminating arenaviruses such as Lassa virus from Mastomys populations.


Subject(s)
Arenaviridae Infections/epidemiology , Arenavirus/immunology , Rodent Diseases/epidemiology , Animals , Antibodies, Viral , Disease Reservoirs/veterinary , Mice , Population Density , Seroepidemiologic Studies , Tanzania/epidemiology
3.
Parasit Vectors ; 11(1): 90, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422075

ABSTRACT

BACKGROUND: Parasite evolution is hypothesized to select for levels of parasite virulence that maximise transmission success. When host population densities fluctuate, low levels of virulence with limited impact on the host are expected, as this should increase the likelihood of surviving periods of low host density. We examined the effects of Morogoro arenavirus on the survival and recapture probability of multimammate mice (Mastomys natalensis) using a seven-year capture-mark-recapture time series. Mastomys natalensis is the natural host of Morogoro virus and is known for its strong seasonal density fluctuations. RESULTS: Antibody presence was negatively correlated with survival probability (effect size: 5-8% per month depending on season) but positively with recapture probability (effect size: 8%). CONCLUSIONS: The small negative correlation between host survival probability and antibody presence suggests that either the virus has a negative effect on host condition, or that hosts with lower survival probability are more likely to obtain Morogoro virus infection, for example due to particular behavioural or immunological traits. The latter hypothesis is supported by the positive correlation between antibody status and recapture probability which suggests that risky behaviour might increase the probability of becoming infected.


Subject(s)
Arenaviridae Infections/veterinary , Arenavirus/isolation & purification , Murinae , Rodent Diseases/mortality , Animals , Antibodies, Viral/blood , Arenaviridae Infections/mortality , Arenavirus/immunology , Behavior, Animal , Rodent Diseases/virology , Survival Analysis
4.
Mol Phylogenet Evol ; 113: 150-160, 2017 08.
Article in English | MEDLINE | ID: mdl-28552433

ABSTRACT

Giant sengis (Macroscelidea; Macroscelididae; Rhynchocyon), also known as giant elephant-shrews, are small-bodied mammals that range from central through eastern Africa. Previous research on giant sengi systematics has relied primarily on pelage color and geographic distribution. Because some species have complex phenotypic variation and large geographic ranges, we used molecular markers to evaluate the phylogeny and taxonomy of the genus, which currently includes four species: R. chrysopygus, R. cirnei (six subspecies), R. petersi (two subspecies), and R. udzungwensis. We extracted DNA from fresh and historical museum samples from all taxa except one R. cirnei subspecies, and we generated and analyzed approximately 4700 aligned nucleotides (2685 bases of mitochondrial DNA and 2019 bases of nuclear DNA) to reconstruct a molecular phylogeny. We genetically evaluate Rhynchocyon spp. sequences previously published on GenBank, propose that the captive R. petersi population in North American zoos is likely R. p. adersi, and suggest that hybridization among taxa is not widespread in Rhynchocyon. The DNA sample we have from the distinctive but undescribed giant sengi from the Boni forest of northern coastal Kenya is unexpectedly nearly identical to R. chrysopygus, which will require further study. Our analyses support the current morphology-based taxonomy, with each recognized species forming a monophyletic clade, but we propose elevating R. c. stuhlmanni to a full species.


Subject(s)
Phylogeny , Shrews/classification , Shrews/genetics , Alleles , Animals , Base Sequence , Bayes Theorem , DNA, Mitochondrial/genetics , Geography , Kenya , Pigmentation , Species Specificity
5.
Integr Zool ; 10(6): 531-42, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26331406

ABSTRACT

The lesser pouched rat, Beamys hindei, is a small rodent that is patchily distributed in the Eastern Arc Mountains and coastal forests in East Africa. The ecology of this species and its current distribution in coastal forests is not well known. Therefore, we conducted a study in selected coastal forests to assess the current distribution of the species and to investigate the population ecology in terms of abundance fluctuations and demographic patterns. Assessments of the species distribution were conducted in 5 forests through trapping with Sherman live traps. Data on ecology were obtained from monthly capture-mark-recapture studies conducted for 5 consecutive nights per month in two 1 ha grids set in Zaraninge Forest over a 2-year period. The results indicate the presence of B. hindei in 3 forests where it was not previously recorded. The population abundance estimates ranged from 1 to 40 animals per month, with high numbers recorded during rainy seasons. Reproduction patterns and sex ratios did not differ between months. Survival estimates were not influenced by season, and recruitment was low, with growth rate estimates of 1 animal per month. These estimates suggest a stable population of B. hindei in Zaraninge Forest. Further studies are recommended to establish the home range, diet and burrowing behavior of the species in coastal forests in East Africa.


Subject(s)
Ecosystem , Forests , Rodentia , Animals , Demography , Female , Male , Population Density , Seasons , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...