Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36671378

ABSTRACT

Essential oils (EOs) and their vapour phase of Curcuma longa (Zingiberaceae), Cymbopogon citratus (Poaceae), Ocimum campechianum (Lamiaceae), and Zingiber officinale (Zingiberaceae) of cultivated plants grown in an Amazonian Ecuador area were chemically characterised by Gas Chromatography-Flame Ionization Detector (GC-FID), Gas Chromatography-Mass Spectrometry (GC-MS), and Head Space-Gas Chromatograph-Flame Ionization Detector-Mass Spectrometry (HS-GC-FID-MS).figure The EOs analyses led to the identification of 25 compounds for C. longa (99.46% of the total; ar-turmerone: 23.35%), 18 compounds for C. citratus (99.59% of the total; geraniol: 39.43%), 19 compounds for O. campechianum (96.24% of the total; eugenol: 50.97%), and 28 for Z. officinale (98.04% of the total; α-Zingiberene: 15.45%). The Head Space fractions (HS) revealed C. longa mainly characterised by limonene and 1,8-cineole (37.35%) and α-phellandrene (32.33%); Z. officinale and C. citratus showed camphene (50.39%) and cis-Isocitral (15.27%) as the most abundant compounds, respectively. O. campechianum EO revealed a higher amount of sesquiterpenes (10.08%), mainly characterised by E-caryophyllene (4.95%), but monoterpene fraction remained the most abundant (89.94%). The EOs were tested for antioxidant, antimicrobial, and mutagen-protective properties and compared to the Thymus vulgaris EO as a positive reference. O. campechianum EO was the most effective in all the bioactivities checked. Similar results emerged from assaying the bioactivity of the vapour phase of O. campechianum EO. The antioxidant and antimicrobial activity evaluation of O. campechianum EO were repeated through HP-TLC bioautography assay, pointing out eugenol as the lead compound for bioactivity. The mutagen-protective evaluation checked through Ames's test properly modified evidenced a better capacity of O. campechianum EO compared with the other EOs, reducing the induced mutagenicity at 0.1 mg/plate. However, even with differences in efficacy, the overall results suggest important perspectives for the functional use of the four studied EOs.

2.
J Ethnopharmacol ; 244: 111932, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31128149

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Hedyosmum (family: Chloranthaceae) represents an interesting source of natural active compounds, and the 45 species of this genus are widespread in Central and South America and to a lesser extent Southeast Asia (southern China and western Malaysia). Several species are traditionally used in folk medicine. However, the data made available in recent years have not been organized and compared. AIM OF THIS REVIEW: The present study is a critical assessment of the state-of-the-art concerning the traditional uses, the phytochemistry and the pharmacology of species belonging to the genus Hedyosmum to suggest further research strategies and to facilitate the exploitation of the therapeutic potential of Hedyosmum species for the treatment of human disorders. MATERIALS AND METHODS: The present review consists of a systematic overview of scientific literature concerning the genus Hedyosmum published between 1965 and 2018. Moreover, an older text, dated from 1843, concerning the traditional uses of H. bonplandianum Kunth has also been considered. Several databases (Francis & Taylor, Google Scholar, PubMed, SciELO, SciFinder, Springer, Wiley, and The Plant List Database) have been used to perform this work. RESULTS: Sixteen species of the genus Hedyosmum have been mentioned as traditional remedies, and a large number of ethnomedicinal uses, including for the treatment of pain, depression, migraine, stomach-ache and ovary diseases, have been reported. Five species have been used as flavouring agents, tea substitutes or foods. Sesterterpenes, sesquiterpene lactones, monoterpenes, hydroxycinnamic acid derivatives, flavonoids, and neolignans have been reported as the most important compounds in these species. Studies concerning their biological activities have shown that members of the Hedyosmum genus possesses promising biological properties, such as analgesic, antinociceptive, antidepressant, anxiolytic, sedative, and hypnotic effects. Preliminary studies concerning the antibacterial, antioxidant, antiplasmodial, and antifungal activities of these plants as well as their cytotoxic activities against different tumour cell lines have been reported. Some active compounds from the Hedyosmum genus have been used as starting points for the innovative and bioinspired development of synthetic molecules. A critical assessment of these papers has been performed, and some conceptual and methodological problems have been identified regarding the materials and methods and the experimental design used in these studies, including a lack of ethnopharmacological research. CONCLUSIONS: The present review partially confirms the basis for some of the traditional uses of Hedyosmum species (mainly H. brasiliense) through preclinical studies that demonstrated their antinociceptive and neuroprotective effects. Due to promising preliminary results, further studies should be conducted on 13-hydroxy-8,9-dehydroshizukanolide and podoandin. Moreover, several essential oils (EOs) from this genus have been preliminarily investigated, and the cytotoxic and antibacterial activities of H. brasiliense and H. sprucei EOs certainly deserve further investigation. From the promising findings of the present analysis, we can affirm that this genus deserves further research from ethnopharmacological and toxicological perspectives.


Subject(s)
Magnoliopsida , Plant Preparations/therapeutic use , Animals , Ethnopharmacology , Humans , Medicine, Traditional , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Preparations/chemistry , Plant Preparations/pharmacology
3.
Parasite ; 26: 23, 2019.
Article in English | MEDLINE | ID: mdl-30994444

ABSTRACT

Aedes aegypti, the main arbovirus vector of the Yellow fever, Dengue, Chikungunya and Zika viruses, is widely distributed in tropical and subtropical areas throughout the world. Preventive control efforts have been implemented worldwide aimed at reducing its impact on human health. The recent reduction of chemicals available for vector control due to their negative impact on the environment and human health and the increase in mosquito resistance to insecticides have driven the research community to identify and evaluate sustainable alternatives to synthetic insecticides. In this study, the potential larvicidal effect of essential oils extracted from Ocimum campechianum, Ocotea quixos and Piper aduncum were tested in vitro. GC and GC-MS analyses showed that the main compounds were eugenol (18%), 1,8-cineole (39%) and dillapiole (48%), respectively. Susceptibility to essential oils was measured according to the WHO protocol. After 24 h, the mean percentage mortality ranged from 2.7 to 100% for P. aduncum, from 2.2 to 100% for O. campechianum, and from 2.9 to 100% for O. quixos. The highest potential was displayed by P. aduncum, followed by O. campechianum and O. quixos, with LC50 values of 25.7, 69.3 and 75.5 ppm, respectively. The rapid and effective larvicidal activity of these three oils led us to consider these results to be promising, also considering the possibility of local cultivation of these plants in tropical and subtropical areas and the simple technology for their large-scale preparation and production. Further studies are needed to evaluate the individual components and their activity as larvicides.


Subject(s)
Aedes/drug effects , Ocimum/chemistry , Ocotea/chemistry , Oils, Volatile/pharmacology , Piper/chemistry , Plant Extracts/pharmacology , Animals , Larva/drug effects , Mosquito Vectors/drug effects , Plant Extracts/chemistry
4.
Molecules ; 24(8)2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31027274

ABSTRACT

The chemical composition and biological activity of essential oils isolated from the leaves of Siparuna aspera, Siparuna macrotepala, Piper leticianum, Piper augustum and the rhizome of Hedychium coronarium were evaluated. These species are used medicinally in different ways by the Amazonian communities that live near the Kutukú mountain range. Chemical studies revealed that the main components for the two Siparuna species were germacrene D, bicyclogermacrene, α-pinene, δ-cadinene, δ-elemene, α-copaene and ß-caryophyllene; for the two Piper species ß-caryophyllene, germacrene D, α-(E,E)-farnesene, ß-elemene, bicyclogermacrene, δ-cadinene and for H. coronarium 1,8-cineole, ß-pinene, α-pinene and α-terpineol. The antioxidant activity of all essential oils was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), photochemiluminescence (PCL) quantitative assays, and DPPH and ABTS bioautographic profiles, with different results for each of them. Antimicrobial activity studies were carried out on three yeasts, six Gram positive and four Gram negative bacteria, by means of the disc diffusion method. The essential oil of H. coronarium showed the most relevant results on L. grayi, K. oxytoca and S. mutans, P. augustum and P. leticianum on S. mutans. An antibacterial bioautographic test for H. coronarium was also carried out and highlighted the potential activity of terpinen-4-ol and 1,8-cineole.


Subject(s)
Oils, Volatile/analysis , Zingiberaceae/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Bicyclic Monoterpenes , Bridged Bicyclo Compounds/analysis , Bridged Bicyclo Compounds/pharmacology , Cyclohexane Monoterpenes , Cyclohexenes/analysis , Cyclohexenes/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Monoterpenes/analysis , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Rainforest , Sesquiterpenes/analysis , Sesquiterpenes/pharmacology
5.
Article in English | MEDLINE | ID: mdl-30643525

ABSTRACT

Oreocallis grandiflora (Lam.) R. Br. is an Ecuadorian species belonging to the Proteaceae family, commonly known as cucharillo (Loja and Zamora provinces), cucharilla (Sierra region), gañal (Bolívar province), and algil (Chimborazo province). Its leaves and flowers, collected during blooming, are traditionally used for oral administration to treat liver diseases, vaginal bleeding, and ovary/uterus inflammation and as digestive, diuretic, and hypoglycemic remedy. Related literature does not report any scientific evidences regarding the chemical composition of the used parts of this species (leaves and flowers), while few indications are reported about the healthy properties of their preparations. Based on these premises, the present research was performed with the objectives to fill the gaps of the chemical and biological knowledge about this species, enriching the knowledge related to the plant biodiversity of Amazonian Ecuador and to the ethnobotanical tradition of Andean communities. Chemical and biological investigation (in vitro antioxidant and anti-inflammatory activity) of flower and leaf hydroalcoholic extracts shed a light on the functional metabolites putatively involved in healthy properties of the O. grandiflora traditional preparations. The chemical fingerprinting achieved by HPTLC and 1HNMR analyses showed the presence of flavonoids, subsequently quantitatively estimated by AlCl3 complexation assay and HPLC-DAD. Silica gel chromatography allowed the isolation of the main compounds of the flower extract: quercetin 3-O-ß-glucuronide and myricetin 3-O-ß-glucuronide. RP-HPLC-DAD-MS analyses showed the presence of quercetin 3-O-rutinoside and isorhamnetin 3-O-rutinoside, in addition to the above-mentioned molecules, in the leaf extract. Regarding the antioxidant (DPPH test, a radical scavenging assay) and anti-inflammatory (WST-1 assay, an oxidative burst test) activities, leaf extract showed the most promising results when compared to the positive controls. The same extract, however, exhibited a higher cytotoxicity compared to the flower extract, indicating the latter preparation as the most interesting anti-inflammatory crude drug.

6.
Molecules ; 22(7)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28704964

ABSTRACT

In this study, we performed the chemical characterization of Myrcia splendens (Sw.) DC. (Myrtaceae) essential oil from Amazonian Ecuador and the assessment of its bioactivity in terms of cytotoxic, antibacterial, and antioxidant activity as starting point for possible applicative uses. M. splendens essential oil, obtained by hydro-distillation, was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID): the major components were found to be trans-nerolidol (67.81%) and α-bisabolol (17.51%). Furthermore, we assessed the cytotoxic activity against MCF-7 (breast), A549 (lung) human tumor cell lines, and HaCaT (human keratinocytes) non-tumor cell line through 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test: promising results in terms of selectivity and efficacy against the MCF-7 cell line (IC50 of 5.59 ± 0.13 µg/mL at 48 h) were obtained, mainly due to α-bisabolol. Furthermore, antibacterial activity against Gram positive and negative bacteria were performed through High Performance Thin Layer Chromatography (HPTLC) bioautographic assay and microdilution method: trans-nerolidol and ß-cedren-9-one were the main molecules responsible for the low antibacterial effects against human pathogens. Nevertheless, interesting values of Minimum Inhibitory Concentration (MIC) were noticeable against phytopathogen strains. Radical scavenging activity performed by HPTLC bioautographic and spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) approaches were negligible. In conclusion, the essential oil revealed a good potential for plant defense and anti-cancer applications.


Subject(s)
Myrtaceae/chemistry , Oils, Volatile/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cell Line , Cell Line, Tumor , Ecuador , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Humans , Monocyclic Sesquiterpenes , Oils, Volatile/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
7.
J Oleo Sci ; 63(12): 1243-50, 2014.
Article in English | MEDLINE | ID: mdl-25391685

ABSTRACT

Nowadays, data concerning the composition of Caryodendron orinocense Karst. (Euphorbiaceae) and Bactris gasipaes Kunth (Arecaceae) seed oils are lacking. In light of this fact, in this paper fatty acids and unsaponifiable fraction composition have been determined using GC-MS, HPLC-DAD (Diode Array Detector), NMR approaches and possible future applications have been preliminary investigated through estimation of antioxidant activity, performed with DPPH test. For C. orinocense linoleic acid (85.59%) was the main component, lauric (33.29%) and myristic (27.76%) acids were instead the most abundant in B. gasipaes. C. orinocense unsaponifiable fraction (8.06%) evidenced a remarkable content of ß-sitosterol, campesterol, stigmasterol, squalene and vitamin E (816 ppm). B. gasipaes revealed instead ß-sitosterol and squalene as main constituents of unsaponifiable matter (3.01%). Antioxidant capacity evidenced the best performance of C. orinocense seed oil. These preliminary results could be interesting to suggest the improvement of the population's incomes from Amazonian basin. In particular the knowledge of chemical composition of C. orinocense and B. gasipaes oils could be helpful to divulge and valorize these autochthones plants.


Subject(s)
Antioxidants , Arecaceae/chemistry , Euphorbiaceae/chemistry , Fatty Acids/isolation & purification , Fatty Acids/pharmacology , Nuts/chemistry , Plant Oils/chemistry , Seeds/chemistry , Cholesterol/analogs & derivatives , Cholesterol/analysis , Cholesterol/isolation & purification , Cholesterol/pharmacology , Chromatography, High Pressure Liquid , Fatty Acids/analysis , Free Radical Scavengers , Gas Chromatography-Mass Spectrometry , Lauric Acids/analysis , Lauric Acids/isolation & purification , Lauric Acids/pharmacology , Linoleic Acid/analysis , Linoleic Acid/isolation & purification , Linoleic Acid/pharmacology , Magnetic Resonance Spectroscopy , Myristic Acid/analysis , Myristic Acid/isolation & purification , Myristic Acid/pharmacology , Phytosterols/analysis , Phytosterols/isolation & purification , Phytosterols/pharmacology , Plant Oils/isolation & purification , Sitosterols/analysis , Sitosterols/isolation & purification , Sitosterols/pharmacology , Squalene/analysis , Squalene/isolation & purification , Squalene/pharmacology , Stigmasterol/analysis , Stigmasterol/isolation & purification , Stigmasterol/pharmacology , Vitamin E/analysis , Vitamin E/isolation & purification , Vitamin E/pharmacology
8.
Chem Biodivers ; 10(10): 1909-19, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24130034

ABSTRACT

The biotransformations of (RS)-linalool (1), (S)-citronellal (2), and sabinene (3) with fungi isolated from the epicarp of fruits of Citrus genus of the Amazonian forest (i.e., C. limon, C. aurantifolia, C. aurantium, and C. paradisiaca) are reported. The more active strains have been characterized, and they belong to the genus Penicillium and Fusarium. Different biotransformation products have been obtained depending on fungi and substrates. (RS)-Linalool (1) afforded the (E)- and (Z)-furanlinalool oxides (7 and 8, resp.; 39 and 37% yield, resp.) with Fusarium sp. (1D2), 6-methylhept-5-en-2-one (4; 49%) with F. fujikuroi, and 1-methyl-1-(4-methypentyl)oxiranemethanol (6; 42%) with F. concentricum. (S)-Citronellal (2) gave (S)-citronellol (12; 36-76%) and (S)-citronellic acid (11; 5-43%) with Fusarium species, while diastereoisomeric p-menthane-3,8-diols 13 and 14 (20 and 50% yield, resp.) were obtained as main products with Penicillium paxilli. Finally, both Fusarium species and P. paxilli biotransformed sabinene (3) to give mainly 4-terpineol (19; 23-56%), and (Z)- and (E)-sabinene hydrates (17 (3-21%) and 18 (11-17%), resp.).


Subject(s)
Citrus/microbiology , Fungi/metabolism , Terpenes/metabolism , Acyclic Monoterpenes , Aldehydes/chemistry , Aldehydes/metabolism , Bicyclic Monoterpenes , Biotransformation , Ecuador , Fruit/microbiology , Fungi/isolation & purification , Gas Chromatography-Mass Spectrometry , Monoterpenes/chemistry , Monoterpenes/metabolism , Stereoisomerism , Terpenes/chemistry
9.
Environ Toxicol Pharmacol ; 27(1): 39-48, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21783920

ABSTRACT

Essential oils from aerial parts of Piper aduncum (Matico) and Piper obliquum (Anis del Oriente) of ecuadorian origin were analyzed by GC-FID, GC-MS, (13)C NMR and their biological and pharmacological activities were assessed. Chemical composition proved to be unusually different from previous reports for safrole-rich P. obliquum (45.8%), while P. aduncum main constituent was dillapiol (45.9%). No genotoxic activity was found in the Ames/Salmonella typhimurium (TA98 and TA100) assay, either with or without S9 activation. Mutagen-protective properties, evaluated using sodium azide, 2-nitrofluorene and 2-aminoanthracene as mutagens/promutagens, was observed against promutagen 2-aminoanthracene, likely in consequence of microsomial deactivation. Antimicrobial assays have been performed on Gram+/Gram- bacteria, dermatophyte and phytopathogenic fungi and best results were provided by P. aduncum against fungal strains with complete inhibition at 500µg/ml. Preliminary analgesic and antithrombotic activities evidenced the absence of the former in hot plate and edema assays and a limited antiplatelet action against three different agonists (ADP, AA and U46619). Both oils have a very limited antioxidant capacity.

SELECTION OF CITATIONS
SEARCH DETAIL