Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Blood ; 124(13): e21-32, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25097177

ABSTRACT

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , MicroRNAs/genetics , Primary Myelofibrosis/genetics , RNA, Messenger/genetics , Antigens, CD34/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Regulatory Networks , Gene Silencing , Granulocytes/metabolism , Hematopoietic Stem Cells/cytology , Humans , Megakaryocytes/cytology , Megakaryocytes/metabolism , Polycomb Repressive Complex 2/genetics , RNA Interference , Reproducibility of Results , Thrombopoiesis/genetics
3.
Exp Hematol ; 40(12): 1043-1054.e6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22885124

ABSTRACT

Histone deacetylase inhibitors represent a family of targeted anticancer compounds that are widely used against hematological malignancies. So far little is known about their effects on normal myelopoiesis. Therefore, in order to investigate the effect of histone deacetylase inhibitors on the myeloid commitment of hematopoietic stem/progenitor cells, we treated CD34(+) cells with valproic acid (VPA). Our results demonstrate that VPA treatment induces H4 histone acetylation and hampers cell cycle progression in CD34(+) cells sustaining high levels of CD34 protein expression. In addition, our data show that VPA treatment promotes erythrocyte and megakaryocyte differentiation. In fact, we demonstrate that VPA treatment is able to induce the expression of growth factor-independent protein 1B (GFI1B) and of mixed-lineage leukemia translocated to chromosome 3 protein (MLLT3), which are crucial regulators of erythrocyte and megakaryocyte differentiation, and that the up-regulation of these genes is mediated by the histone hyperacetylation at their promoter sites. Finally, we show that GFI1B inhibition impairs erythroid and megakaryocyte differentiation induced by VPA, while MLLT3 silencing inhibits megakaryocyte commitment only. As a whole, our data suggest that VPA sustains the expression of stemness-related markers in hematopoietic stem/progenitor cells and is able to interfere with hematopoietic lineage commitment by enhancing erythrocyte and megakaryocyte differentiation and by inhibiting the granulocyte and mono-macrophage maturation.


Subject(s)
Cell Differentiation/drug effects , Erythroid Cells/cytology , Megakaryocytes/cytology , Nuclear Proteins/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Valproic Acid/pharmacology , Acetylation/drug effects , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cell Differentiation/immunology , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Proliferation/drug effects , Cells, Cultured , Chromatin/metabolism , Erythroid Cells/drug effects , Erythroid Cells/metabolism , GATA2 Transcription Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Silencing , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Histones/metabolism , Humans , Megakaryocytes/drug effects , Megakaryocytes/metabolism , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL