Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Voice ; 37(6): 897-906, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34281751

ABSTRACT

OBJECTIVES/HYPOTHESIS: The objectives of this study were to (1) identify optimal clusters of 15 standard acoustic and aerodynamic voice metrics recommended by the American Speech-Language-Hearing Association (ASHA) to improve characterization of patients with primary muscle tension dysphonia (pMTD) and (2) identify combinations of these 15 metrics that could differentiate pMTD from other types of voice disorders. STUDY DESIGN: Retrospective multiparametric METHODS: Random forest modeling, independent t-tests, logistic regression, and affinity propagation clustering were implemented on a retrospective dataset of 15 acoustic and aerodynamic metrics. RESULTS: Ten percent of patients seen at the New York University (NYU) Voice Center over two years met the study criteria for pMTD (92 out of 983 patients), with 65 patients with pMTD and 701 of non-pMTD patients with complete data across all 15 acoustic and aerodynamic voice metrics. PCA plots and affinity propagation clustering demonstrated substantial overlap between the two groups on these parameters. The highest ranked parameters by level of importance with random forest models-(1) mean airflow during voicing (L/sec), (2) mean SPL during voicing (dB), (3) mean peak air pressure (cmH2O), (4) highest F0 (Hz), and (5) CPP mean vowel (dB)-accounted for only 65% of variance. T-tests showed three of these parameters-(1) CPP mean vowel (dB), (2) highest F0 (Hz), and (3) mean peak air pressure (cmH2O)-were statistically significant; however, the log2-fold change for each parameter was minimal. CONCLUSION: Computational models and multivariate statistical testing on 15 acoustic and aerodynamic voice metrics were unable to adequately characterize pMTD and determine differences between the two groups (pMTD and non-pMTD). Further validation of these metrics is needed with voice elicitation tasks that target physiological challenges to the vocal system from baseline vocal acoustic and aerodynamic ouput. Future work should also place greater focus on validating metrics of physiological correlates (eg, neuromuscular processes, laryngeal-respiratory kinematics) across the vocal subsystems over traditional vocal output measures (eg, acoustics, aerodynamics) for patients with pMTD. LEVEL OF EVIDENCE: II.


Subject(s)
Dysphonia , Humans , Dysphonia/diagnosis , Dysphonia/therapy , Retrospective Studies , Muscle Tonus , Voice Quality , Speech Acoustics , Acoustics
2.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36057257

ABSTRACT

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Subject(s)
Prospective Studies , Cell Line , Retrospective Studies
3.
ACS Pharmacol Transl Sci ; 5(3): 156-168, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35311021

ABSTRACT

T-type voltage-gated Ca2+ channels have been implicated in many human disorders, and there has been increasing interest in developing highly selective and potent T-type Ca2+ channel modulators for potential clinical use. However, the unique biophysical properties of T-type Ca2+ channels are not conducive for developing high-throughput screening (HTS) assays to identify modulators, particularly potentiators. To illustrate, T-type Ca2+ channels are largely inactivated and unable to open to allow Ca2+ influx at -25 mV, the typical resting membrane potential of the cell lines commonly used in cellular screening assays. To address this issue, we developed cell lines that express Kir2.3 channels to hyperpolarize the membrane potential to -70 mV, thus allowing T-type channels to return to their resting state where they can be subsequently activated by membrane depolarization in the presence of extracellular KCl. Furthermore, to simplify the HTS assay and to reduce reagent cost, we stably expressed a membrane-tethered genetic calcium sensor, GCaMP6s-CAAX, that displays superior signal to the background compared to the untethered GCaMP6s or the synthetic Ca2+ sensor Fluo-4AM. Here, we describe a novel GCaMP6s-CAAX-based calcium assay utilizing a high-throughput fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA) format that can identify both activators and inhibitors of T-type Ca2+ channels. Lastly, we demonstrate the utility of this novel fluorescence-based assay to evaluate the activities of two distinct G-protein-coupled receptors, thus expanding the use of GCaMP6s-CAAX to a wide range of applications relevant for developing cellular assays in drug discovery.

4.
Cancer Lett ; 533: 215614, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35245627

ABSTRACT

Glioblastoma (GBM) is a highly aggressive cancer with a dismal prognosis. Constitutively active STAT3 has a causal role in GBM progression and is associated with poor patient survival. We rationally designed a novel small molecule, SS-4, by computational modeling to specifically interact with STAT3. SS-4 strongly and selectively inhibited STAT3 tyrosine (Y)-705 phosphorylation in MT330 and LN229 GBM cells and inhibited their proliferation and induced apoptosis with an IC50 of ∼100 nM. The antiproliferative and apoptotic actions of SS-4 were Y-705 phosphorylation dependent, as evidenced by its lack of effects on STAT3 knockout (STAT3KO) cells or STAT3KO cells that overexpressed a phospho-Y705 deficient (STAT3Y705F) mutant, and the recovery of effects when wild-type STAT3 or a phospho-serine (S)727 deficient mutant was expressed in STAT3KO cells. SS-4 increased the expression of STAT3 repressed genes, while decreasing the expression of STAT3 promoted genes. Importantly, SS-4 markedly reduced the growth of GBM intracranial tumor xenografts. These data together identify SS-4 as a potent STAT3 inhibitor that selectively blocks Y705-phosphorylation, induces apoptosis, and inhibits growth of human GBM models in vitro and in vivo.


Subject(s)
Brain Neoplasms , Glioblastoma , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Phosphorylation , STAT3 Transcription Factor/metabolism , Tyrosine/metabolism
5.
Bioorg Med Chem ; 53: 116533, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34863065

ABSTRACT

Glioblastoma (GBM) is the most aggressive and treatment-refractory malignant adult brain cancer. After standard of care therapy, the overall median survival for GBM is only ∼6 months with a 5-year survival <10%. Although some patients initially respond to the DNA alkylating agent temozolomide (TMZ), unfortunately most patients become resistant to therapy and brain tumors eventually recur. We previously found that knockout of BRG1 or treatment with PFI-3, a small molecule inhibitor of the BRG1 bromodomain, enhances sensitivity of GBM cells to temozolomide in vitro and in vivo GBM animal models. Those results demonstrated that the BRG1 catalytic subunit of the SWI/SNF chromatin remodeling complex appears to play a critical role in regulating TMZ-sensitivity. In the present study we designed and synthesized Structurally Related Analogs of PFI-3 (SRAPs) and tested their bioactivity in vitro. Among of the SRAPs, 9f and 11d show better efficacy than PFI-3 in sensitizing GBM cells to the antiproliferative and cell death inducing effects of temozolomide in vitro, as well as enhancing the inhibitor effect of temozolomide on the growth of subcutaneous GBM tumors.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Azabicyclo Compounds/pharmacology , DNA Helicases/antagonists & inhibitors , Glioblastoma/drug therapy , Nuclear Proteins/antagonists & inhibitors , Pyridines/pharmacology , Temozolomide/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents, Alkylating/chemistry , Azabicyclo Compounds/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , DNA Helicases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Congenic , Mice, Inbred NOD , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , Pyridines/chemistry , Structure-Activity Relationship , Temozolomide/chemistry , Transcription Factors/metabolism
6.
J Biol Chem ; 295(39): 13516-13531, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32723867

ABSTRACT

Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.


Subject(s)
Benzimidazoles/pharmacology , Prion Diseases/drug therapy , Prion Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Benzimidazoles/chemistry , Drug Discovery , Drug Evaluation, Preclinical , Humans , Magnetic Resonance Spectroscopy , Prion Diseases/metabolism , Prion Proteins/metabolism , Small Molecule Libraries/chemistry
7.
Cancer Discov ; 10(11): 1690-1705, 2020 11.
Article in English | MEDLINE | ID: mdl-32703769

ABSTRACT

Colorectal cancer is driven by mutations that activate canonical WNT/ß-catenin signaling, but inhibiting WNT has significant on-target toxicity, and there are no approved therapies targeting dominant oncogenic drivers. We recently found that activating a ß-catenin-independent branch of WNT signaling that inhibits GSK3-dependent protein degradation induces asparaginase sensitivity in drug-resistant leukemias. To test predictions from our model, we turned to colorectal cancer because these cancers can have WNT-activating mutations that function either upstream (i.e., R-spondin fusions) or downstream (APC or ß-catenin mutations) of GSK3, thus allowing WNT/ß-catenin and WNT-induced asparaginase sensitivity to be unlinked genetically. We found that asparaginase had little efficacy in APC or ß-catenin-mutant colorectal cancer, but was profoundly toxic in the setting of R-spondin fusions. Pharmacologic GSK3α inhibition was sufficient for asparaginase sensitization in APC or ß-catenin-mutant colorectal cancer, but not in normal intestinal progenitors. Our findings demonstrate that WNT-induced therapeutic vulnerabilities can be exploited for colorectal cancer therapy. SIGNIFICANCE: Solid tumors are thought to be asparaginase-resistant via de novo asparagine synthesis. In leukemia, GSK3α-dependent protein degradation, a catabolic amino acid source, mediates asparaginase resistance. We found that asparaginase is profoundly toxic to colorectal cancers with WNT-activating mutations that inhibit GSK3. Aberrant WNT activation can provide a therapeutic vulnerability in colorectal cancer.See related commentary by Davidsen and Sullivan, p. 1632.This article is highlighted in the In This Issue feature, p. 1611.


Subject(s)
Asparaginase/metabolism , Colorectal Neoplasms/genetics , Wnt Signaling Pathway/genetics , Cell Line, Tumor , Humans
8.
Sci Transl Med ; 10(431)2018 03 07.
Article in English | MEDLINE | ID: mdl-29515000

ABSTRACT

Glycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/ß inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent ß-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of ß-catenin are associated with many cancers. Knockdown of GSK3α or GSK3ß individually does not increase ß-catenin and offers a conceptual resolution to targeting GSK3: paralog-selective inhibition. However, inadequate chemical tools exist. The design of selective adenosine triphosphate (ATP)-competitive inhibitors poses a drug discovery challenge due to the high homology (95% identity and 100% similarity) in this binding domain. Taking advantage of an Asp133→Glu196 "switch" in their kinase hinge, we present a rational design strategy toward the discovery of paralog-selective GSK3 inhibitors. These GSK3α- and GSK3ß-selective inhibitors provide insights into GSK3 targeting in acute myeloid leukemia (AML), where GSK3α was identified as a therapeutic target using genetic approaches. The GSK3α-selective compound BRD0705 inhibits kinase function and does not stabilize ß-catenin, mitigating potential neoplastic concerns. BRD0705 induces myeloid differentiation and impairs colony formation in AML cells, with no apparent effect on normal hematopoietic cells. Moreover, BRD0705 impairs leukemia initiation and prolongs survival in AML mouse models. These studies demonstrate feasibility of paralog-selective GSK3α inhibition, offering a promising therapeutic approach in AML.


Subject(s)
Enzyme Inhibitors/therapeutic use , Glycogen Synthase Kinase 3/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Dipeptides/chemistry , Dipeptides/metabolism , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/metabolism , Humans , Mutagenesis, Site-Directed , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , U937 Cells , beta Catenin/genetics , beta Catenin/metabolism
9.
ACS Chem Biol ; 13(4): 1038-1047, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29485852

ABSTRACT

Schizophrenia is a severe neuropsychiatric disease that lacks completely effective and safe therapies. As a polygenic disorder, genetic studies have only started to shed light on its complex etiology. To date, the positive symptoms of schizophrenia are well-managed by antipsychotic drugs, which primarily target the dopamine D2 receptor (D2R). However, these antipsychotics are often accompanied by severe side effects, including motoric symptoms. At D2R, antipsychotic drugs antagonize both G-protein dependent (Gαi/o) signaling and G-protein independent (ß-arrestin) signaling. However, the relevant contributions of the distinct D2R signaling pathways to antipsychotic efficacy and on-target side effects (motoric) are still incompletely understood. Recent evidence from mouse genetic and pharmacological studies point to ß-arrestin signaling as the major driver of antipsychotic efficacy and suggest that a ß-arrestin biased D2R antagonist could achieve an additional level of selectivity at D2R, increasing the therapeutic index of next generation antipsychotics. Here, we characterize BRD5814, a highly brain penetrant ß-arrestin biased D2R antagonist. BRD5814 demonstrated good target engagement via PET imaging, achieving efficacy in an amphetamine-induced hyperlocomotion mouse model with strongly reduced motoric side effects in a rotarod performance test. This proof of concept study opens the possibility for the development of a new generation of pathway selective antipsychotics at D2R with reduced side effect profiles for the treatment of schizophrenia.


Subject(s)
Antipsychotic Agents/therapeutic use , Receptors, Dopamine D2/drug effects , beta-Arrestins/metabolism , Animals , Diagnostic Imaging/methods , GTP-Binding Proteins/antagonists & inhibitors , Humans , Locomotion/drug effects , Mice , Schizophrenia/drug therapy , Signal Transduction/drug effects , beta-Arrestins/antagonists & inhibitors
10.
In Vivo ; 31(1): 39-43, 2017 01 02.
Article in English | MEDLINE | ID: mdl-28064218

ABSTRACT

BACKGROUND/AIM: Mitochondrial-targeted gramicidin S (GS)-nitroxide, JP4-039, has been demonstrated to be a potent radiation mitigator, and safe over a wide dose range. In addition, JP4-039 has organ-specific effectiveness when locally applied. MATERIALS AND METHODS: We tested the effect of another GS-nitroxide, XJB-5-131, which has more effective mitochondrial localization, and compared these results to those for radiation mitigation against the hematopoietic syndrome, and two analogs of JP4-039, which have the same mitochondrial localization signal, but different chemical payloads: JRS527.084 contains a second nitroxide per molecule, and TK649.030 contains an ester group attached to the nitroxide. RESULTS: The results demonstrate the superiority of JP4-039 as a systemic radiation mitigator. CONCLUSION: Structure-activity relationships and bioassays demonstrate that JP4-039 is an optimized small-molecule radiation mitigator.


Subject(s)
Nitrogen Oxides/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Whole-Body Irradiation/adverse effects , Animals , Dose-Response Relationship, Radiation , Female , Mice , Mice, Inbred C57BL , Molecular Structure , Radiation Injuries, Experimental/etiology , Radiation-Protective Agents/administration & dosage , Structure-Activity Relationship
11.
ACS Cent Sci ; 2(9): 653-659, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27725964

ABSTRACT

Discovering compounds and mechanisms for inhibiting ferroptosis, a form of regulated, nonapoptotic cell death, has been of great interest in recent years. In this study, we demonstrate the ability of XJB-5-131, JP4-039, and other nitroxide-based lipid peroxidation mitigators to prevent ferroptotic cell death in HT-1080, BJeLR, and panc-1 cells. Several analogues of the reactive oxygen species (ROS) scavengers XJB-5-131 and JP4-039 were synthesized to probe structure-activity relationships and the influence of subcellular localization on the potency of these novel ferroptosis suppressors. Their biological activity correlated well over several orders of magnitude with their structure, relative lipophilicity, and respective enrichment in mitochondria, revealing a critical role of intramitochondrial lipid peroxidation in ferroptosis. These results also suggest that preventing mitochondrial lipid oxidation might offer a viable therapeutic opportunity in ischemia/reperfusion-induced tissue injury, acute kidney injury, and other pathologies that involve ferroptotic cell death pathways.

12.
ACS Chem Biol ; 11(7): 1952-63, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27128528

ABSTRACT

The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3ß, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3ß inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Drug Design , Humans
13.
Bioorg Med Chem Lett ; 25(21): 4828-4833, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26159482

ABSTRACT

Mitochondria play important roles in tumor cell physiology and survival by providing energy and metabolites for proliferation and metastasis. As part of their oncogenic status, cancer cells frequently produce increased levels of mitochondrial-generated reactive oxygen species (ROS). However, extensive stimulation of ROS generation in mitochondria has been shown to be able to induce cancer cell death, and is one of the major mechanisms of action of many anticancer agents. We hypothesized that enhancing mitochondrial ROS generation through direct targeting of a ROS generator into mitochondria will exhibit tumor cell selectivity, as well as high efficacy in inducing cancer cell death. We thus synthesized a mitochondrial targeted version of ß-lapachone (XJB-Lapachone) based on our XJB mitochondrial targeting platform. We found that the mitochondrial targeted ß-lapachone is more efficient in inducing apoptosis compared to unconjugated ß-lapachone, and the tumor cell selectivity is maintained. XJB-Lapachone also induced extensive cellular vacuolization and autophagy at a concentration not observed with unconjugated ß-lapachone. Through characterization of mitochondrial function we revealed that XJB-Lapachone is indeed more capable of stimulating ROS generation in mitochondria, which led to a dramatic mitochondrial uncoupling and autophagic degradation of mitochondria. Taken together, we have demonstrated that targeting ß-lapachone accomplishes higher efficacy through inducing ROS generation directly in mitochondria, resulting in extensive mitochondrial and cellular damage. XJB-Lapachone will thus help to establish a novel platform for the design of next generation mitochondrial targeted ROS generators for cancer therapy.


Subject(s)
Mitochondria/drug effects , Mitochondria/pathology , Naphthoquinones/pharmacology , Neoplasms/pathology , Vacuoles/drug effects , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mitochondria/metabolism , Molecular Structure , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
14.
Org Lett ; 17(4): 806-8, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25658603

ABSTRACT

A synthesis of the complete tetracyclic framework of the structurally unique Lycopodium alkaloid lycopladine H has been accomplished using a strategy involving a double alkene hydroformylation/intramolecular reductive amination to form the azocane and spiro-piperidine moieties of the natural product.


Subject(s)
Alkaloids/chemical synthesis , Alkenes/chemistry , Azabicyclo Compounds/chemical synthesis , Lycopodium/chemistry , Polycyclic Compounds/chemical synthesis , Alkaloids/chemistry , Amination , Molecular Structure , Polycyclic Compounds/chemistry , Stereoisomerism
15.
J Mol Cell Cardiol ; 77: 136-46, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25451170

ABSTRACT

Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury.


Subject(s)
Cardiotonic Agents/pharmacology , Cyclic N-Oxides/pharmacology , Free Radical Scavengers/pharmacology , Mitochondria, Heart/metabolism , Myocardial Ischemia/drug therapy , Animals , Cell Line , Drug Evaluation, Preclinical , Hydrogen Peroxide/metabolism , Male , Membrane Potential, Mitochondrial , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Oxidative Stress , Oxygen Consumption , Rats, Inbred F344 , Recovery of Function
16.
ACS Med Chem Lett ; 5(8): 900-4, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25147611

ABSTRACT

Low aqueous solubility is a common challenge in drug discovery and development and can lead to inconclusive biological assay results. Attaching small, polar groups that do not interfere with the bioactivity of the pharmacophore often improves solubility, but there is a dearth of viable neutral moieties available for this purpose. We have modified several poorly soluble drugs or drug candidates with the oxetanyl sulfoxide moiety of the DMSO analog MMS-350 and noted in most cases a moderate to large improvement of aqueous solubility. Furthermore, the membrane permeability of a test sample was enhanced compared to the parent compound.

17.
Org Biomol Chem ; 11(25): 4147-53, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23715589

ABSTRACT

JP4-039 is a lead structure in a series of nitroxide conjugates that are capable of accumulating in mitochondria and scavenging reactive oxygen species (ROS). To explore structure-activity relationships (SAR), new analogs with variable nitroxide moieties were prepared. Furthermore, fluorophore-tagged analogs were synthesized and provided the opportunity for visualization in mitochondria. All analogs were tested for radioprotective and radiomitigative effects in 32Dcl3 cells.


Subject(s)
Boron Compounds/analysis , Fluorescent Dyes/analysis , Free Radical Scavengers/analysis , Mitochondria/ultrastructure , Nitrogen Oxides/analysis , Radiation-Protective Agents/analysis , Radiation-Sensitizing Agents/analysis , Cell Line , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , Humans , Mitochondria/drug effects , Mitochondria/radiation effects , Models, Molecular , Nitrogen Oxides/chemical synthesis , Nitrogen Oxides/pharmacology , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/pharmacology , Radiation-Sensitizing Agents/chemical synthesis , Radiation-Sensitizing Agents/pharmacology
18.
Org Lett ; 14(8): 2172-5, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22486178

ABSTRACT

An efficient synthetic strategy has been developed for annulation of an azocane ring onto a bicyclo[2.2.2]octane scaffold via an intramolecular hydroaminomethylation protocol to generate an advanced intermediate bearing three of the four rings of the structurally unique Lycopodium alkaloid lycopladine H (1).


Subject(s)
Alkaloids/chemical synthesis , Azabicyclo Compounds/chemical synthesis , Lycopodium/chemistry , Alkaloids/chemistry , Azabicyclo Compounds/chemistry , Cyclization , Molecular Structure , Stereoisomerism
19.
Tetrahedron ; 67(52): 10203-10207, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22125345

ABSTRACT

A strategy for a total synthesis of the structurally novel Lycopodium alkaloid lycopladine H has been investigated. Key steps that have been tested include: 1.a regioselective Diels-Alder cycloaddition of nitroethylene with an o-quinone ketal to produce the bicyclo[2.2.2]octane moiety of the alkaloid; 2. a stereoselective Henry reaction to generate the requisite functionality and configuration at C-5; 3. a stereoselective catalytic hydrogenation of a trisubstituted alkene to set the C-15 methyl configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...