Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 171(1): 212-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21070809

ABSTRACT

The development of a quantitative real-time PCR (qPCR) assay for human rhinovirus serotype 16 (HRV16) is described using the plasmid pR16.11, which contains the full-length genome of HRV16. A standard curve was generated by plotting the critical threshold (C(t)) against numbers of plasmid. The limit of sensitivity was less than10 cDNA copies, and the curve showed a high degree of linearity over a range of 10(1) to 10(6) cDNA copies with r(2)≥0.9989. Amplification efficiency of the qPCR was greater than 97.6 percent. The standard curve was highly reproducible with low intra- and inter-assay coefficients of variation. Standard curves were also generated from cDNA derived from two viral suspensions of known TCID(50), and were exactly parallel to those generated from the plasmid. Comparison of the curves generated from the plasmid or viral cDNA showed that for the two suspensions, TCID(50) corresponded to either 142 or 2088 viral particles. This new qPCR will permit quantitative assessments of interactions between virus and epithelium such as determinations of the affinity and number of viral binding sites or of the number of virus produced per infected cell.


Subject(s)
Polymerase Chain Reaction/methods , Rhinovirus/isolation & purification , Rhinovirus/pathogenicity , Viral Load/methods , Cells, Cultured , Epithelial Cells/virology , Humans , Rhinovirus/genetics , Virulence
2.
Biotechniques ; 39(2): 249-55, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16116798

ABSTRACT

We have developed a technique for expanding primary cultures of human tracheal epithelium while minimizing loss of differentiated structure and function. Cells were seeded at 2 x 10(4) cells/cm2 into T75 flasks and trypsinized when approximately 80% confluent. The dispersed cells were then passaged at the same plating density into further T75 flasks or seeded at 5 x 10(5) cells/cm2 on porous-bottomed inserts and maintained with an air-interface. Differentiation of cells on inserts was assessed from transepithelial electrical resistance (an index of tight junction formation), short-circuit current (an index of transepithelial salt transport), cell numbers, total cell protein, and histology. Unpassaged cells (P0) and cells passaged once (P1) took about a week to become 80% confluent on T75 flasks, with 10-fold and 5-fold increases in cell numbers, respectively. Confluence was achieved in approximately 3 days following plating to inserts. Functionally and structurally, P1 and P2 cells (cells passaged twice) were little different from P0 cells. Thus, within a little over 2 weeks, the numbers of confluent cell sheets can be increased 50-fold with minimal change in function. However, there was a marked decline in differentiation by cells passaged three times (P3), and not all cell preparations could be taken to P4 (cells passaged four times).


Subject(s)
Cell Culture Techniques/methods , Epithelial Cells/cytology , Epithelial Cells/physiology , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , Trachea/cytology , Trachea/physiology , Cell Count , Cell Differentiation/physiology , Cell Membrane/physiology , Cell Proliferation , Cells, Cultured , Electric Impedance , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...