Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Funct Mater ; 34(14)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38966003

ABSTRACT

4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.

2.
Chem Commun (Camb) ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037748

ABSTRACT

In this work, we introduce a 3D-printable virus-like particle (VLP)-enhanced cross-linked biopolymer system. VLPs displaying surface-available acrylate groups were prepared through aza-Michael addition to serve as resins. The VLP resins were then photopolymerized into a poly(ethylene glycol) diacrylate (PEGDA) network following DLP 3D printing. This approach represents a convergence of disciplines, where the synergistic interaction between virology and additive manufacturing unlocks new frontiers in biotechnology.

3.
Small ; 20(22): e2306564, 2024 May.
Article in English | MEDLINE | ID: mdl-38105580

ABSTRACT

3D-printed engineered living materials (ELM) are promising bioproduction platforms for agriculture, biotechnology, sustainable energy, and green technology applications. However, the design of these platforms faces several challenges, such as the processability of these materials into complex form factors and control over their mechanical properties. Herein, ELM are presented as 3D-printed bioreactors with arbitrary shape geometries and tunable mechanical properties (moduli and toughness). Poly(ethylene glycol) diacrylate (PEGDA) is used as the precursor to create polymer networks that encapsulate the microorganisms during the vat photopolymerization process. A major limitation of PEGDA networks is their propensity to swell and fracture when submerged in water. The authors overcame this issue by adding glycerol to the resin formulation to 3D print mechanically tough ELM hydrogels. While polymer concentration affects the modulus and reduces bioproduction, ELM bioreactors still maintain their metabolic activity regardless of polymer concentration. These ELM bioreactors have the potential to be used in different applications for sustainable architecture, food production, and biomedical devices that require different mechanical properties from soft to stiff.


Subject(s)
Bioreactors , Polyethylene Glycols , Polymerization , Printing, Three-Dimensional , Polyethylene Glycols/chemistry , Hydrogels/chemistry , Polymers/chemistry
4.
Adv Mater ; 35(11): e2207673, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36594431

ABSTRACT

High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax  = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks.

5.
Chem Mater ; 33(18): 7194-7202, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34602744

ABSTRACT

The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients' needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties. As a consequence of the crystallization process, the hydrogel modulus can be tuned up to 3 orders of magnitude upon heating up to 40 °C, offering an interesting strategy to directly 3D-print hydrogels without the need of postprinting cross-linking. Moreover, the absence of any toxicity makes these materials ideal candidates for biomedical applications.

6.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751908

ABSTRACT

This work reports the versatility of polydopamine (PD) when applied as a particle coating in a composite of polylactide (PLA). Polydopamine was observed to increase the particle-matrix interface strength and facilitate the adsorption of drugs to the material surface. Here, barium sulfate radiopaque particles were functionalized with polydopamine and integrated into a polylactide matrix, leading to the formulation of a biodegradable and X-ray opaque material with enhanced mechanical properties. Polydopamine functionalized barium sulfate particles also facilitated the adsorption and release of the antibiotic levofloxacin. Analysis of the antibacterial capacity of these composites and the metabolic activity and proliferation of human dermal fibroblasts in vitro demonstrated that these materials are non-cytotoxic and can be 3D printed to formulate complex biocompatible materials for bone fixation devices.


Subject(s)
Barium Sulfate/chemistry , Biocompatible Materials , Indoles/chemistry , Polyesters/chemistry , Polymers/chemistry , Tissue Engineering , Tissue Scaffolds , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Cells, Cultured , Drug Carriers/chemistry , Fibroblasts , Humans , Levofloxacin/pharmacology , Mechanical Phenomena
7.
Polymers (Basel) ; 10(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-30966191

ABSTRACT

There is a great interest in incorporating catechol moieties into polymers in a controlled manner due to their interesting properties, such as the promotion of adhesion, redox activity or bioactivity. One possibility is to incorporate the catechol as end-group in a polymer chain using a functional initiator by means of controlled polymerization strategies. Nevertheless, the instability of catechol moieties under oxygen and basic pH requires tedious protection and deprotection steps to perform the polymerization in a controlled fashion. In the present work, we explore the organocatalyzed synthesis of catechol end-functional, semi-telechelic polylactide (PLLA) using non-protected dopamine, catechol molecule containing a primary amine, as initiator. NMR and SEC-IR results showed that in the presence of a weak organic base such as triethylamine, the ring-opening polymerization (ROP) of lactide takes place in a controlled manner without need of protecting the cathechol units. To further confirm the end-group fidelity the catechol containing PLLA was characterized by Cyclic Voltammetry and MALDI-TOF confirming the absence of side reaction during the polymerization. In order to exploit the potential of catechol moieties, catechol end-group of PLLA was oxidized to quinone and further reacted with aliphatic amines. In addition, we also confirmed the ability of catechol functionalized PLLA to reduce metal ions to metal nanoparticles to obtain well distributed silver nanoparticles. It is expected that this new route of preparing catechol-PLLA polymers without protection will increase the accessibility of catechol containing biodegradable polymers by ROP.

SELECTION OF CITATIONS
SEARCH DETAIL