Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(8): e0254803, 2021.
Article in English | MEDLINE | ID: mdl-34347813

ABSTRACT

The increasing severity of Striga gesnerioides attacks on cowpea across West Africa has been related to its prolificity, seed mobility and longevity, and adaptation to aridity, in a context of agricultural intensification. To understand this fast extension, we analyzed (1) the distributions of the crop and the witchweed with ecological niche modeling and multivariate climate analysis, and (2) the chronological information available from collections and the literature. The ecoclimatic envelope of S. gesnerioides attacks on cowpea is the same as on wild hosts. Consistently, the modeled distribution of cowpea infestations is closely similar to the simple superposition of the parasite model (involving all hosts) and the crop model. Striga gesnerioides infestations are restricted to the driest component of the cultivated cowpea ecoclimatic niche, corresponding to the Sahelian and Sudano-Sahelian belts and the Dahomey gap. Thus, the parasite distribution, determined by its own requirements, does not constrain cowpea cultivation under Guinean climates. The spatial and temporal distributions of S. gesnerioides field infestations are consistent with an earlier impact on cowpea production in eastern West Africa, related itself to a similar trend in cowpea cultivation intensification from Niger, Nigeria and Benin to Burkina Faso and Ghana. Mali and Senegal were affected later, and literature reports of Senegalese strains of S. gesnerioides from the wild developing virulence on cowpea offer a model for the diffusion of witchweed parasitism by multilocal evolution, through host-driven selection, instead of epidemic diffusion. A contrario, in Côte d'Ivoire, cowpea is much less widespread, so the parasite has remained confined to the wild compartment. Thus, both historical and ecogeographic analyses refute the vision of S. gesnerioides as an invader. Instead, they point to the increasing importance and intensification of the crop, and the consequent loss of biodiversity, as the main drivers of the extension and diversification of its crop-specific strains.


Subject(s)
Agriculture , Biological Evolution , Ecosystem , Geography , Striga/physiology , Vigna/physiology , Africa, Western , Climate , Host-Parasite Interactions , Prevalence , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL