Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Pathogens ; 13(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39204256

ABSTRACT

The cereal cyst nematode (Heterodera latipons) is becoming an economically important species in global cereal production as it is being identified in many new cereal cultivated areas and causes significant losses. Consequently, understanding its biology becomes crucial for researchers in identifying its vulnerabilities and implementing effective control measures. In the current study, different morphological and biochemical changes of H. latipons cysts containing eggs with infective juveniles from a barley field in Jordan were studied during the summer of 2021, at two sample dates. The first, at the harvest of the cereal crop (June 2021), when the infective second-stage juveniles (J2s) were initiating diapause, and the second, before planting the sequent cereal crop (late October 2021), when the J2s were ending diapause. The studied population was characterized morphologically and molecularly, showing 98.4% molecular similarity to both JOD from Jordan and Syrian "300" isolates of H. latipons. The obtained results and observations revealed that there were dramatic changes in all the investigated features of the cysts and eggs they contained. Morphological changes such as cyst color, sub-crystalline layer, and thickness of the rigid eggshell wall were observed. A slight change in the emergence time of J2s from cysts was observed without any difference in the number of emerged J2s. The results of biochemical changes showed that the total contents of carbohydrates, glycogen, trehalose, glycerol, and protein were higher in cysts collected in October when compared to those cysts collected in June. The SDS-PAGE pattern indicated the presence of a protein with the size of ca. 100 kDa in both sampling dates, whereas another protein (ca. 20 kDa) was present only in the cysts of October. Furthermore, the expression of trehalase (tre) gene was detected only in H. latipons collected in October. The outcomes of this study provide new helpful information that elucidates diapause in H. latipons and may be used for the implementation of new management strategies of cyst nematodes.

2.
Toxicon ; 247: 107812, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38908527

ABSTRACT

"Tannins" are compounds that belong to a group of secondary metabolites found in plants. They have a polyphenolic nature and exhibit active actions as first line defenses against invading pathogens. Several studies have demonstrated the multiple activities of tannins, highlighting their effectiveness as broad-spectrum antimicrobial agents. Tannins have reported as antibacterial, antifungal, and antiviral compounds by preventing enzymatic activities and inhibiting the synthesis of nucleic acids. Additionally, tannins primarily strengthen the plant cell wall, making it almost impenetrable to harmful pathogens. Most tannins are synthesized via the phenylpropanoid pathway to become secondary metabolites. Increased uptake of tannins has the potential to provide permanent immunity to subsequent infections by strengthening cell walls and producing antimicrobial compounds. Tannins also demonstrate a synergistic response with other defense-related molecules, such as phytoalexins and pathogenesis-related proteins, including antimicrobial peptides. Studying the mechanisms mediated by tannins on pathogen behaviors would be beneficial in stimulating plant defense against pathogens. This understanding could help explain the occurrence of diseases and outbreaks and enable potential mitigation in both natural and agricultural ecosystems.


Subject(s)
Anti-Infective Agents , Tannins , Tannins/pharmacology , Anti-Infective Agents/pharmacology , Plants
3.
Plants (Basel) ; 12(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631135

ABSTRACT

The DUF668 gene performs a critical role in mitigating the impact of abiotic stress factors. In this study, we identified 30 DUF668 genes in a soybean genome, distributed across fifteen chromosomes. The phylogenetic analysis classified the DUF668 genes into three groups (group I, group II, and group III). Interestingly, gene structure analysis illustrated that several GmDUF668 genes were without introns. Furthermore, the subcellular localization results suggested that GmDUF668 proteins were present in the nucleus, mitochondria, cytoplasm, and plasma membrane. GmDUF668 promoters were analyzed in silico to gain insight into the presence of regulatory sequences for TFs binding. The expression profiling illustrated that GmDUF668 genes showed expression in leaves, roots, nodules, and flowers. To investigate their response to salt stress, we utilized the RNA sequencing data of GmDUF668 genes. The results unveiled that GmDUF668-8, GmDUF668-20, and GmDUF668-30 genes were upregulated against salt stress treatment. We further validated these findings using qRT-PCR analysis. These findings provide a scientific basis to explore the functions of GmDUF668 genes against different stress conditions.

4.
BioTech (Basel) ; 12(2)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37092471

ABSTRACT

Atriplex spp. (saltbush) is known to survive extremely harsh environmental stresses such as salinity and drought. It mitigates such conditions based on specialized physiological and biochemical characteristics. Dehydrin genes (DHNs) are considered major players in this adaptation. In this study, a novel DHN gene from Azrak (Jordan) saltbush was characterized along with other Atriplex species from diverse habitats. Intronless DHN-expressed sequence tags (495-761 bp) were successfully cloned and sequenced. Saltbush dehydrins contain one S-segment followed by three K-segments: an arrangement called SK3-type. Two substantial insertions were detected including three copies of the K2-segemnet in A. canescens. New motif variants other than the six-serine standard were evident in the S-segment. AhaDHN1 (A. halimus) has a cysteine residue (SSCSSS), while AgaDHN1 (A. gardneri var. utahensis) has an isoleucine residue (SISSSS). In contrast to the conserved K1-segment, both the K2- and K3-segment showed several substitutions, particularly in AnuDHN1 (A. nummularia). In addition, a parsimony phylogenetic tree based on homologs from related genera was constructed. The phylogenetic tree resolved DHNs for all of the investigated Atriplex species in a superclade with an 85% bootstrap value. Nonetheless, the DHN isolated from Azraq saltbush was uniquely subclustred with a related genera Halimione portulacoides. The characterized DHNs revealed tremendous diversification among the Atriplex species, which opens a new venue for their functional analysis.

5.
Mitochondrial DNA B Resour ; 8(11): 1205-1208, 2023.
Article in English | MEDLINE | ID: mdl-38239911

ABSTRACT

The complete mitochondrial genome of the olive cultivar Mehras was determined using high-throughput sequencing technology. It consisted of 710,808 base pairs and comprised 70 genes, including 44 protein-coding genes, 23 tRNA genes, and three rRNA genes, with a GC content of 44.7%. Significant single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were detected throughout the mitogenome. Phylogenetic analysis was conducted using other genotypes, including five olive cultivars, three related species, and Olea exasperata as an out-group. The analysis revealed that the olive cultivar Mehras shares an ancient common ancestor with the Frantoio cultivar from Italy and the Manzanilla cultivar from Spain, which confirms previous findings based on plastome sequencing.

6.
BioTech (Basel) ; 11(3)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36134917

ABSTRACT

Exposure to successive stress cycles can result in a variety of memory response patterns in several plant species. We have investigated a group of these patterns at both the transcriptional and physiological memory levels in durum wheat. The data revealed huge discrepancies between investigated durum wheat cultivars, which presumably are all drought tolerant. It was possible to generate a consensus memory response pattern for each cultivar, where Hourani 27 was the most tolerant followed by Balikh 2 and then Omrabi 5. When durum wheat homologs from rice and maize were compared, only 18% gave similar memory response patterns. The data would indicate the presence of potentially divergent memory mechanisms in different plant species and genotypes. Ultimately, a thorough examination is required for each genotype before giving solid memory-based conclusions that can be applied in plant breeding and agricultural management practices.

7.
BioTech (Basel) ; 11(3)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35997342

ABSTRACT

This study aimed to develop novel SSR markers in tomato. Several BAC clones along chromosome 3 in tomato were selected based on their content. The criteria was the availability of genes, either directly or indirectly related to stress response (drought, salinity, and heat) in tomato. A total of 20 novel in silico SSR markers were developed and 96 important nearby genes were identified. The identified nearby genes represent different tomato genes involved in plant growth and development and biotic and abiotic stress tolerance. The developed SSR markers were assessed using tomato landraces. A total of 29 determinate and semi-determinate local tomato landraces collected from diverse environments were utilized. A total of 33 alleles with mean of 1.65 alleles per locus were scored, showing 100% polymorphic patterns, with a mean of 0.18 polymorphism information content (PIC) values. The mean of observed and expected heterozygosity were 0.19 and 0.24, respectively. The mean value of the Jaccard similarity index was used for clustering the landraces. The developed microsatellite markers showed potential to assess genetic variability among tomato landraces. The genetic distance information reported in this study can be used by breeders in future genetic improvement of tomato for tolerance against diverse stresses.

8.
Mitochondrial DNA B Resour ; 6(3): 1263-1264, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33829102

ABSTRACT

Using high-throughput sequencing technology, the complete mitochondrial genome of Awassi-Jo breed (Ovis aries) was decoded. Mitochondrial genome was 16,617 bp in length. The genome contained 37 genes (13 protein-coding, 22 tRNA, and 2 rRNA) and a control region (D-loop region). The genes were encoded on the H-strand, except for the ND6 gene and 8 tRNA genes, which were encoded on the L-strand. The GC content is 38.9%. Phylogenetic analysis was performed to compare Awassi-Jo with other sheep breeds. The phylogenetic tree showed that Awassi-Jo diverged earlier than related breeds (Turkey, Italy, Germany, and Netherland) with a common ancestor in haplogroup HB. The results revealed the importance of mitochondrial data in studying sheep evolution and domestication.

9.
Physiol Mol Biol Plants ; 27(1): 107-117, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33627966

ABSTRACT

Salinity stress in increasingly becoming a major challenge in current and expanding agricultural ecosystems. Unlike temporal abiotic stresses, plants are usually exposed to salinity stress for an entire lifespan. Therefore, a long term effect (10 weeks) of continuous salinity exposure was investigated for three common fig landraces (Zraki, Mwazi, and Khdari). Both relative water content and chlorophyll content decreased with elevated salinity stress, while stem length barely changed. The most prominent decline was observed in root biomass. The data would align common fig to moderately tolerant threshold slop with a C50 range of 100 to 150 mM NaCl. A high and significant correlation was evident between root biomass and chlorophyll content (85%). Concurrently, differential expression of putative salinity responsive genes in common fig were determined; signal peptide peptidase-like 2B (FcSPPL2B), dehydration responsive element binding protein (FcDREB), calcineurin B-like protein (CBL)-CBL-interacting serine/threonine-protein kinase 11 (FcCIPK11), sorbitol dehydrogenase (FcSORD) and dehydrin (FcDHN). The data were discussed for each gene in respect of its potential role in salinity stress mitigation. The combined physiological and molecular data would conclude Zraki as the most salinity tolerant genotype. The major implication of the data emphasizes the tremendous genotype by environment (salinity stress) interaction in common fig. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s12298-020-00921-z).

10.
Mitochondrial DNA B Resour ; 6(1): 194-195, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33553630

ABSTRACT

The complete chloroplast genome sequence of Olea europaea subsp. europaea cultivar Mehras was determined using high-throughput sequencing technology. Chloroplast genome was 155,897 bp in length, containing a pair of 25,742 bp inverted repeat (IR) regions, which were separated by large and small single-copy regions (LSC and SSC) of 86,622 and 17,791 bp, respectively. The chloroplast genome contained 130 genes (85 protein-coding, 37 tRNA, and eight rRNA). GC content was 37.8%. We performed phylogenetic analysis with other isolates. The analysis showed that O. e. subsp. europaea cultivar Mehras has an ancient common ancestor with cultivated olives in Italy, Spain, and Cyprus.

11.
Saudi J Biol Sci ; 26(7): 1463-1467, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31762610

ABSTRACT

Ubiquitin expression protein DNA clone (Hl-UBI) was isolated from Heterodera latipons collected from North Jordan. Its sequence of 285 nucleotides was also determined and deposited in the GeneBank. The 285-bp open reading frame coded for 76-amino acid protein having two domains; the ubiquitin domain and the C terminal extension. The first 59 amino acids were predicted with the ubiquitin domain with identity percentages of 78% to ubiquitin of H. schachtii, 77% to polyubiquitin of Globodera pallida, 74% to ubiquitin of Globodera rostochiensis and 72% to ubiquitin of Heterodera glycines. The other domain at the C-terminus, containing 17 amino acids, showed no homology to any known protein. Sequence analysis showed a calculated encoding amino acids molecular weight of 8.77 kDa, theoretical isoelectric point = 4.76, negatively charged residues = 12, positively charged residues = 9, extinction coefficient = 1490, estimated half-life = 30 h, instability index = 32.51 and grand average of hydropathicity = -0.537. The demonstrated subcellular localization analysis of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane of Hl-UBI protein occupied about 52.20, 21.70, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that Hl-UBI gene was highly conserved during evolution and belonged to ubiquitin gene family.

12.
Saudi J Biol Sci ; 23(1): 108-14, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26858546

ABSTRACT

Phenotypic diversity of five Jordanian populations of cyst nematodes, Heterodera spp. collected from five regions from Jordan (Ar-Ramtha, Madaba, Dana, Al-Karak, and Jerash) was investigated. Soil samples were collected from one representative field in each region. Morphological and morphometrical characteristics revealed that Heterodera latipons is dominated in cereal fields at Ar-Ramtha, Madaba, Dana and Al-Karak regions and Heterodera schachtii in Jerash. Cysts populations from all cereal fields had bifenestrate vulval cone and a strong underbridge. Wherever, cysts of the cabbage population had ambifenestrate vulval cone with long vulval slit. The bullae were absent in Ar-Ramtha, Madaba and Dana populations, but present in Al-Karak and Jerash. Based on 12 morphometrical characters, the first three functions in canonical discriminant analysis accounted 99.3% of the total variation. Distance from dorsal gland duct opening to stylet base, underbridge length, a = L/W (body length/midbody width) and length of hyaline tail tip had strong and significant contributions in the first function. While the second function was strongly influenced by length of hyaline tail, fenestral length, fenestral width and tail length. However, the third canonical discriminate function was found to be influenced by stylet length, fenestral length, a = L/W (body length/midbody width) and underbridge width. The graphical representation of the distribution of the samples showed that the first canonical discriminant function clearly separated H. schachtii from Jerash from other populations. Whereas, H. latipons collected from Madaba and Dana were clearly separated in the second function. The results indicated that differences at morphological and morphometrical levels revealed diverse populations of Heterodera spp. in Jordan.

13.
Evol Bioinform Online ; 10: 177-85, 2014.
Article in English | MEDLINE | ID: mdl-25374451

ABSTRACT

Cell cycle regulation mechanisms appear to be conserved throughout eukaryotic evolution. One of the important proteins involved in the regulation of cell cycle processes is retinoblastoma-related protein (RBR), which is a negative regulator of cell cycle progression, controlling the G1/S transition in plants and animals. In this study, we present the cloning and genomic structure of a putative SlRBR gene in the tomato Solanum lycopersicum L. by isolating cDNA clones that correspond to the SlRBR gene from tomato using primers that were designed from available Solanaceae ESTs based on conserved sequences between the PcG genes in Arabidopsis thaliana and tomato. The SlRBR cDNAs were cloned into the pBS plasmid and sequenced. Both 5'- and 3'-RACE were generated and sequenced. FlcDNA of the SlRBR gene of 3,554 bp was composed of a 5'-UTR of 140 bp, an ORF of 3,054 bp, and a 3'-UTR of 360 bp. The translated ORF encodes a polypeptide of 1,018 amino acids. An alignment of the deduced amino acids indicates that there are highly conserved regions between the tomato SlRBR predicted protein and plant hypothetical RBR gene family members. Both of the unrooted phylogenetic trees, which were constructed using maximum parsimony and maximum likelihood methods, indicate a close relationship between the SlRBR predicted protein and the RBR protein of Nicotiana benthamiana. QRT-PCR indicates that SlRBR gene is expressed in closed floral bud tissues 1.7 times higher than in flower tissues, whereas the expression level in unripe fruit tissue is lower by about three times than in flower tissues.

14.
PLoS One ; 9(5): e97963, 2014.
Article in English | MEDLINE | ID: mdl-24835852

ABSTRACT

BACKGROUND: Cucumber (Cucumis sativus) belongs to the Cucurbitaceae family that includes more than 800 species. The cucumber genome has been recently sequenced and annotated. Transcriptomics and genome sequencing of many plant genomes are providing information on candidate genes potentially related to agronomically important traits. To accelerate functional characterization of these genes in cucumber we have generated an EMS mutant population that can be used as a TILLinG platform for reverse genetics. PRINCIPAL FINDINGS: A population of 3,331 M2 mutant seed families was generated using two EMS concentrations (0.5% and 0.75%). Genomic DNA was extracted from M2 families and eight-fold pooled for mutation detection by ENDO1 nuclease. To assess the quality of the mutant collection, we screened for induced mutations in five genes and identified 26 mutations. The average mutation rate was calculated as 1/1147 Kb giving rise to approximately 320 mutations per genome. We focused our characterization on three missense mutations, G33C, S238F and S249F identified in the CsACS2 sex determination gene. Protein modeling and crystallography studies predicted that mutation at G33 may affect the protein function, whereas mutations at S238 and S249 may not impair the protein function. As predicted, detailed phenotypic evaluation showed that the S238F and the S249F mutant lines had no sexual phenotype. In contrast, plants homozygous for the G33C mutation showed a complete sexual transition from monoecy to andromonoecy. This result demonstrates that TILLinG is a valuable tool for functional validation of gene function in crops recalcitrant to transgenic transformation. CONCLUSIONS: We have developed a cucumber mutant population that can be used as an efficient reverse genetics tool. The cucumber TILLinG collection as well as the previously described melon TILLinG collection will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in cucurbits in general.


Subject(s)
Cucumis sativus/genetics , Mutation, Missense , Plant Proteins/genetics , Amino Acid Sequence , Molecular Sequence Data , Phenotype , Plant Proteins/chemistry , Plant Proteins/metabolism , Reverse Genetics/methods
15.
Plant Signal Behav ; 4(11): 1049-58, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19901554

ABSTRACT

Plants respond to environmental stresses by altering transcription of genes involved in the response. The chromatin modifier ATX1 regulates expression of a large number of genes; consequently, factors that affect ATX1 activity would also influence expression from ATX1-regulated genes. Here, we demonstrate that dehydration is such a factor implicating ATX1 in the plant's response to drought. In addition, we report that a hitherto unknown Arabidopsis gene, At3g10550, encodes a phosphoinositide 3'-phosphatase related to the animal myotubularins (AtMTM1). Myotubularin activities in plants have not been described and herein, we identify an overlapping set of genes co-regulated by ATX1 and AtMTM under drought conditions. We propose that these shared genes represent the ultimate targets of partially overlapping branches of the pathways of the nuclear ATX1 and the cytoplasmic AtMTM1. Our analyses offer first genome-wide insights into the relationship of an epigenetic factor and a lipid phosphatase from the other end of a shared drought responding pathway in Arabidopsis.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Genes, Plant , Phosphoric Monoester Hydrolases/genetics , Transcription Factors/genetics , Animals , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Cell Nucleus , Chromatin , Cytoplasm , Dehydration , Epigenesis, Genetic , Gene Expression , Genome, Plant , Histone-Lysine N-Methyltransferase , Mitochondrial Proteins , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Transcription Factors/metabolism
16.
Plant Cell ; 20(3): 568-79, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18375658

ABSTRACT

Gene duplication followed by functional specialization is a potent force in the evolution of biological diversity. A comparative study of two highly conserved duplicated genes, ARABIDOPSIS TRITHORAX-LIKE PROTEIN1 (ATX1) and ATX2, revealed features of both partial redundancy and of functional divergence. Although structurally similar, their regulatory sequences have diverged, resulting in distinct temporal and spatial patterns of expression of the ATX1 and ATX2 genes. We found that ATX2 methylates only a limited fraction of nucleosomes and that ATX1 and ATX2 influence the expression of largely nonoverlapping gene sets. Even when coregulating shared targets, ATX1 and ATX2 may employ different mechanisms. Most remarkable is the divergence of their biochemical activities: both proteins methylate K4 of histone H3, but while ATX1 trimethylates it, ATX2 dimethylates it. ATX2 and ATX1 provide an example of separated K4 di from K4 trimethyltransferase activity.


Subject(s)
Arabidopsis Proteins/genetics , Genes, Duplicate , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Chromatin Immunoprecipitation , Gene Expression Regulation, Plant , Histone-Lysine N-Methyltransferase , Histones/metabolism , Methylation , Models, Genetic , Nucleosomes/metabolism , Oligonucleotide Array Sequence Analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/physiology , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/metabolism , Transcription Factors/physiology
17.
Mol Biol Evol ; 24(2): 482-97, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17148507

ABSTRACT

The presence of Supressor of variegation-Enhanser of zeste-Trithorax (SET) domain genes in bacteria is a current paradigm for lateral genetic exchange between eukaryotes and prokaryotes. Because a major function of SET domain proteins is the chemical modification of chromatin and bacteria do not have chromatin, there is no apparent functional requirement for the existence of bacterial SET domain genes. Consequently, their finding in only a small fraction of pathogenic and symbiotic bacteria was taken as evidence that bacteria have obtained the SET domain genes from their hosts. Furthermore, it was proposed that the products of the genes would, most likely, be involved in bacteria-host interactions. The broadened scope of sequenced bacterial genomes to include also free-living and environmental species provided a larger sample to analyze the bacterial SET domain genes. By phylogenetic analysis, examination of individual chromosomal regions for signs of insertion, and evaluating the chromosomal versus SET domain genes' GC contents, we provide evidence that SET domain genes have existed in the bacterial domain of life independently of eukaryotes. The bacterial genes have undergone an evolution of their own unconnected to the evolution of the eukaryotic SET domain genes. Initial finding of SET domain genes in predominantly pathogenic and symbiotic bacteria resulted, most probably, from a biased sample. However, a lateral transfer of SET domain genes may have occurred between some bacteria and a family of Archaea. A model for the evolution and distribution of SET domain genes in bacteria is proposed.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genes, Bacterial , Amino Acid Sequence , Archaea/genetics , Chlamydia/genetics , Chromosomes, Bacterial , Cytophaga/genetics , Leptospira interrogans/genetics , Models, Genetic , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary/genetics , Rhizobium/genetics , Sequence Alignment , Spirochaeta/genetics
18.
Proc Natl Acad Sci U S A ; 103(15): 6049-54, 2006 Apr 11.
Article in English | MEDLINE | ID: mdl-16585509

ABSTRACT

The Arabidopsis homolog of trithorax, ATX1, regulates numerous functions in Arabidopsis beyond the homeotic genes. Here, we identified genome-wide targets of ATX1 and showed that ATX1 is a receptor for a lipid messenger, phosphatidylinositol 5-phosphate, PI5P. PI5P negatively affects ATX1 activity, suggesting a regulatory pathway connecting lipid-signaling with nuclear functions. We propose a model to illustrate how plants may respond to stimuli (external or internal) that elevate cellular PI5P levels by altering expression of ATX1-controlled genes.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphatidylinositol Phosphates/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Gene Expression Regulation, Plant , Histone-Lysine N-Methyltransferase , Models, Molecular , Molecular Sequence Data , Protein Conformation , Transcription Factors/deficiency
19.
Curr Biol ; 13(8): 627-37, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12699618

ABSTRACT

BACKGROUND: The genes of the trithorax (trxG) and Polycomb groups (PcG) are best known for their regulatory functions in Drosophila, where they control homeotic gene expression. Plants and animals are thought to have evolved multicellularity independently. Although homeotic genes control organ identity in both animals and plants, they are unrelated. Despite this fact, several plant homeotic genes are negatively regulated by plant genes similar to the repressors from the animal PcG. However, plant-activating regulators of the trxG have not been characterized. RESULTS: We provide genetic, molecular, functional, and biochemical evidence that an Arabidopsis gene, ATX1, which is similar to the Drosophila trx, regulates floral organ development. The effects are specific: structurally and functionally related flower homeotic genes are under different control. We show that ATX1 is an epigenetic regulator with histone H3K4 methyltransferase activity. This is the first example of this kind of enzyme activity reported in plants, and, in contrast to the Drosophila and the yeast trithorax homologs, ATX1 can methylate in the absence of additional proteins. In its ability to methylate H3K4 as a recombinant protein, ATX1 is similar to the human homolog. CONCLUSIONS: ATX1 functions as an activator of homeotic genes, like Trithorax in animal systems. The histone methylating activity of the ATX1-SET domain argues that the molecular basis of these effects is the ability of ATX1 to modify chromatin structure. Our results suggest a conservation of trxG function between the animal and plant kingdoms despite the different structural nature of their targets.


Subject(s)
Arabidopsis/genetics , Drosophila Proteins , Gene Expression Regulation, Plant/genetics , Genes, Homeobox/genetics , Transcription Factors , Arabidopsis/metabolism , DNA-Binding Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/ultrastructure , Gene Expression Profiling , Histones/metabolism , In Situ Hybridization , Methyltransferases/metabolism , Microscopy, Electron, Scanning , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL