Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
J Neurosci ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251355

ABSTRACT

Circadian rhythms in conditioned threat extinction emerge from a tissue-level circadian timekeeper, or local clock, in the ventromedial prefrontal cortex (vmPFC). Yet it remains unclear how this local clock contributes to extinction-dependent adaptations. Here we used single-unit and local field potential analyses to interrogate neural activity in the male rat vmPFC during repeated extinction sessions at different times of day. In association with superior recall of a remote extinction memory during the circadian active phase, vmPFC putative principal neurons exhibited phasic firing that was amplified for cue presentations and diminished at transitions in freezing behavior. Coupling of vmPFC gamma amplitude to the phase of low-frequency oscillations was greater during freezing than mobility, and this difference was augmented during the active phase, highlighting a time-of-day dependence in the organization of freezing- versus mobility-associated cell assemblies. Additionally, a greater proportion of vmPFC neurons were phase-locked to low-frequency oscillations during the active phase, consistent with heightened neural excitability at this time of day. Our results suggest that daily fluctuations in vmPFC excitability precipitate enhanced neural recruitment into extinction-based cell assemblies during the active phase, providing a potential mechanism by which the vmPFC local clock modulates circuit and behavioral plasticity during conditioned threat extinction.Significance Statement Conditioned threat extinction is a learning and memory process by which exposure to danger-predictive cues prompts a reduction in defensive behavior. The recall of extinction memories exhibits a robust circadian rhythm, such that recall is stronger during the circadian active phase. However, the mechanisms underlying this circadian rhythm remain unclear. Here we examined neural activity within the rat ventromedial prefrontal cortex, a brain region supporting extinction, in repeated extinction sessions at two times of day. Multiple aspects of single-cell and population activity exhibited extinction-dependent time-of-day differences. Our findings suggest that heightened neural excitability during the active phase promotes the recruitment of neurons into extinction-dependent cell assemblies, offering a mechanism to explain enhanced extinction recall at this time of day.

2.
Stress ; 26(1): 2278315, 2023 11.
Article in English | MEDLINE | ID: mdl-37916300

ABSTRACT

Alcohol use during adolescence coincides with elevated risks of stress-related impairment in adults, particularly via disrupted developmental trajectories of vulnerable corticolimbic and mesolimbic systems involved in fear processing. Prior work has investigated the impact of binge-like alcohol consumption on adult fear and stress, but less is known about whether voluntarily consumed alcohol imparts differential effects based on adolescence phases and biological sex. Here, adolescent male and female Long Evans rats were granted daily access to alcohol (15%) during either early (Early-EtOH; P25-45) or late adolescence (Late-EtOH; P45-55) using a modified drinking-in-the-dark design. Upon adulthood (P75-80), rats were exposed to a three-context (ABC) fear renewal procedure. We found that male and female Early-EtOH rats showed faster acquisition of fear but less freezing during early phases of extinction and throughout fear renewal. In the extinction period specifically, Early-EtOH rats showed normal levels of freezing in the presence of fear-associated cues, but abnormally low freezing immediately after cue offset, suggesting a key disruption in contextual processing and/or novelty seeking brought by early adolescent binge consumption. While the effects of alcohol were most pronounced in the Early-EtOH rats (particularly in females), Late-EtOH rats displayed some changes in fear behavior including slower fear acquisition, faster extinction, and reduced renewal compared with controls, but primarily in males. Our results suggest that early adolescence in males and females and, to a lesser extent, late adolescence in males is a particularly vulnerable period wherein alcohol use can promote stress-related dysfunction in adulthood. Furthermore, our results provide multiple bases for future research focused on developmental correlates of alcohol mediated disruption in the brain.


Subject(s)
Alcohol Drinking , Stress, Psychological , Rats , Male , Female , Animals , Rats, Long-Evans , Alcohol Drinking/adverse effects , Fear , Ethanol/pharmacology , Extinction, Psychological
3.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873067

ABSTRACT

Alcohol use during adolescence coincides with elevated risks of stress-related impairment in adults, particularly via disrupted developmental trajectories of vulnerable corticolimbic and mesolimbic systems involved in fear processing. Prior work has investigated the impact of binge-like alcohol consumption on adult fear and stress, but less is known about whether voluntarily consumed alcohol imparts differential effects based on adolescence phases and biological sex. Here, adolescent male and female Long Evans rats were granted daily access to alcohol (15%) during either early (Early-EtOH; P25-45) or late adolescence (Late-EtOH; P45-55) using a modified drinking-in-the-dark design. Upon adulthood (P75-80), rats were exposed to a three-context (ABC) fear renewal procedure. We found that male and female Early-EtOH rats showed faster acquisition of fear but less freezing during early phases of extinction and throughout fear renewal. In the extinction period specifically, Early-EtOH rats showed normal levels of freezing in the presence of fear-associated cues, but abnormally low freezing immediately after cue offset, suggesting a key disruption in contextual processing and/or novelty seeking brought by early adolescent binge consumption. While the effects of alcohol were most pronounced in the Early-EtOH rats (particularly in females), Late-EtOH rats displayed some changes in fear behavior including slower fear acquisition, faster extinction, and reduced renewal compared with controls, but primarily in males. Our results suggest that early adolescence in males and females and, to a lesser extent, late adolescence in males is a particularly vulnerable period wherein alcohol use can promote stress-related dysfunction in adulthood. Furthermore, our results provide multiple bases for future research focused on developmental correlates of alcohol mediated disruption in the brain.

4.
Physiol Behav ; 263: 114107, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36740134

ABSTRACT

Early life stress (ELS) can set the stage for susceptibility to cognitive and emotional dysfunction in adulthood by disrupting typical neural development. The prefrontal cortex (PFC) continues to mature during early life, making this region particularly vulnerable to disruption for animals who experience ELS. Despite this, the effects of ELS experience on in vivo PFC function in awake and behaving adult animals are currently poorly understood. To assess this, we employed an instrumental conflict task to assess how hungry adult rats, either ELS (wet bedding) or unstressed Controls, were able to flexibly alter their motivation for food reward seeking (lever presses) in situations that were either threatening or safe. During this task, in vivo electrophysiological recordings (both single unit and local field potentials [LFPs]) were made in the rats' ventral-medial PFC (vmPFC). We found that ELS rats were less motivated to lever press for rewards than Controls in the threat situations during repeated extinction sessions. In recordings taken during this suppression task, Control vmPFC neurons displayed reliable differences between motivated actions, such as between rewarded and unrewarded presses, but ELS neurons failed to differentiate these action-outcome differences. We also found differences in task-related LFP activity between groups; in particular, prior ELS experience appears to induce abnormal changes in low-frequency oscillations during shock-associated threat stimuli prior to presses, as well as diminished higher-frequency oscillations following rewarded presses. Collectively, we demonstrate that ELS experience produces persistent impairment in motivational regulation that is associated with significant changes in in vivo PFC signals. Specifically, ELS-experienced adults fail to appropriately update motivated action strategies under threat conditions, and likewise fail to appropriately monitor and update action/outcome relationships in motivated behavior. These ELS-related changes may therefore lay the foundation for heightened susceptibility to mental-health disorders in adults such as substance abuse and post-traumatic stress disorder.


Subject(s)
Neurons , Prefrontal Cortex , Stress, Psychological , Animals , Rats , Neurons/pathology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiopathology , Reward
5.
Neurobiol Learn Mem ; 185: 107541, 2021 11.
Article in English | MEDLINE | ID: mdl-34687892

ABSTRACT

Stress experienced early in development can have profound influences on developmental trajectories and ultimately behaviors in adulthood. Potent stressors during brain maturation can profoundly disrupt prefrontal cortical areas in particular, which can set the stage for prefrontal-dependent alterations in fear regulation and risk of drug abuse in adulthood. Despite these observations, few studies have investigated in vivo signaling in prefrontal signals in animals with a history of early life stress (ELS). Here, rats with ELS experienced during the first post-natal week were then tested on a conditioned suppression paradigm during adulthood. During conditioned suppression, electrophysiological recordings were made in the ventral medial prefrontal cortex (vmPFC) during presentations of a fear-associated cue that resolved both single-unit activity and local field potentials (LFPs). Relative to unstressed controls, ELS-experienced rats showed greater fear-related suppression of lever pressing. During presentations of the fear-associated cue (CS+), neurons in the vmPFC of ELS animals showed a significant increase in the probability of excitatory encoding relative to controls, and excitatory phasic responses in the ELS animals were reliably of higher magnitude than Controls. In contrast, vmPFC neurons in ELS subjects better discriminated between the shock-associated CS+ and the neutral ("safe") CS- cue than Controls. LFPs recorded in the same locations revealed that high gamma band (65-95 Hz) oscillations were strongly potentiated in Controls during presentation of the fear-associated CS+ cue, but this potentiation was abolished in ELS subjects. Notably, no other LFP spectra differed between ELS and Controls for either the CS+ or CS-. Collectively, these data suggest that ELS experience alters the neurobehavioral functions of PFC in adulthood that are critical for processing fear regulation. As such, these alterations may also provide insight into increased susceptibility to other PFC-dependent processes such as risk-based choice, motivation, and regulation of drug use and relapse in ELS populations.


Subject(s)
Fear/physiology , Prefrontal Cortex/physiology , Stress, Psychological/physiopathology , Animals , Animals, Newborn/physiology , Animals, Newborn/psychology , Conditioning, Classical , Cortical Excitability/physiology , Cues , Female , Gamma Rays , Male , Rats , Rats, Long-Evans , Social Behavior , Stress, Psychological/psychology
7.
Neuron ; 102(5): 1037-1052.e7, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31029403

ABSTRACT

Food palatability is one of many factors that drives food consumption, and the hedonic drive to feed is a key contributor to obesity and binge eating. In this study, we identified a population of prepronociceptin-expressing cells in the central amygdala (PnocCeA) that are activated by palatable food consumption. Ablation or chemogenetic inhibition of these cells reduces palatable food consumption. Additionally, ablation of PnocCeA cells reduces high-fat-diet-driven increases in bodyweight and adiposity. PnocCeA neurons project to the ventral bed nucleus of the stria terminalis (vBNST), parabrachial nucleus (PBN), and nucleus of the solitary tract (NTS), and activation of cell bodies in the central amygdala (CeA) or axons in the vBNST, PBN, and NTS produces reward behavior but did not promote feeding of palatable food. These data suggest that the PnocCeA network is necessary for promoting the reinforcing and rewarding properties of palatable food, but activation of this network itself is not sufficient to promote feeding.


Subject(s)
Central Amygdaloid Nucleus/metabolism , Feeding Behavior/physiology , Neurons/metabolism , Protein Precursors/metabolism , Receptors, Opioid/metabolism , Reward , Adiposity , Animals , Body Weight , Central Amygdaloid Nucleus/physiology , Diet, High-Fat , Mice , Neural Pathways , Neurons/physiology , Parabrachial Nucleus/metabolism , Parabrachial Nucleus/physiology , Patch-Clamp Techniques , Protein Precursors/genetics , Receptors, Opioid/genetics , Septal Nuclei/metabolism , Septal Nuclei/physiology , Solitary Nucleus/metabolism , Solitary Nucleus/physiology
8.
Learn Mem ; 25(9): 416-424, 2018 09.
Article in English | MEDLINE | ID: mdl-30115763

ABSTRACT

Despite decades of research, investigations into effective neural and pharmacological therapies for many drugs of abuse, such as cocaine, have produced no FDA-approved approaches. This difficulty derives from the complexity of substance use disorders, which encompass a variety of behavioral, psychological, and neural circuit-based changes that occur as a result of repeated experience with the drug. Dopamine signaling has been demonstrated to play a key role in several aspects of drug abuse-from mediating its reinforcing properties and drug-seeking to triggering relapse-while also mediating a number of important aspects of normal (nondrug related) motivated behaviors and actions. Real-time recording methods such as in vivo voltammetry, electrophysiology, and calcium imaging demonstrate that the signaling properties of dopamine for motivationally relevant stimuli are highly dynamic and spatiotemporally circumscribed within afferent target regions. In this review, we identify the origins and functional consequences of heterogeneous dopamine release in the limbic system, and how these properties are persistently altered in the drug-experienced brain. We propose that these spatiotemporally parallel dopaminergic signals are simultaneously available to the animal, but that these circuits are impaired following prolonged drug experience by disrupting the location and content of dopamine signals in afferent target regions. These findings are discussed in the context of relapse and pathways to discovering new treatments for addiction disorders.


Subject(s)
Brain , Central Nervous System Stimulants/pharmacology , Dopamine/metabolism , Learning , Motivation , Nerve Net , Signal Transduction , Substance-Related Disorders/metabolism , Animals , Brain/drug effects , Brain/metabolism , Humans , Learning/drug effects , Learning/physiology , Motivation/drug effects , Motivation/physiology , Nerve Net/drug effects , Nerve Net/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
9.
eNeuro ; 4(3)2017.
Article in English | MEDLINE | ID: mdl-28593190

ABSTRACT

Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopamine release dynamics in these subregions to cues exclusively signaling the availability of different reward magnitudes. Here, fast-scan cyclic voltammetry was used to compare rapid dopamine release dynamics in the NAc subregions during a magnitude-based decision-making task. Rats learned that distinct cues signaled the availability of either a small or large reward (one or two sugar pellets), and then were given an opportunity to choose their preferred option. We found that peak dopamine release tracked the more preferred (higher-magnitude) option in both core and shell subregions. Critically, however, overall (i.e., global) dopamine release was significantly higher and longer lasting in the shell and tracked the preferred magnitude during the entire cue period. Further, in the shell (not core), dopamine signaling significantly declined immediately at the lever press for reward but increased during the period of reward consumption. Collectively, the results indicate that although dopamine release in both the core and shell are activated by cues signaling the opportunity to respond for rewards of different magnitudes, dopamine release in the shell plays a differential and unique role in tracking information related to the outcome value of reward.


Subject(s)
Decision Making/physiology , Discrimination, Psychological/physiology , Dopamine/metabolism , Nucleus Accumbens/metabolism , Reward , Animals , Conditioning, Operant , Cues , Electrochemical Techniques , Food Deprivation , Male , Rats , Rats, Sprague-Dawley
10.
Neuropsychopharmacology ; 42(3): 766-773, 2017 02.
Article in English | MEDLINE | ID: mdl-27604567

ABSTRACT

Dopamine signals have repeatedly been linked to associative learning and motivational processes. However, there is considerably less agreement on a role for dopamine in reward processing, and therefore whether neuroplastic changes in dopamine function following chronic exposure to drugs of abuse such as cocaine may impair appropriate valuation of rewarding stimuli. To quantify this, we voltammetrically measured real-time dopamine release in the nucleus accumbens (NAc) core or shell while rats received unsignaled deliveries of either a small (1 pellet) or large (2 pellets) reward. In drug-naive controls, core dopamine signals did not discriminate between reward size at any point, while in the shell dopamine encoded magnitude differences only in a slower postpeak period. Despite this lack of discrimination between rewards by the peak DA response, controls easily discriminated between reward options in a subsequent choice task. In contrast, phasic dopamine reward signals were strongly altered by cocaine experience; core dopamine decreased peak response but increased discrimination between reward magnitudes while shell lost phasic responses to reward receipt altogether. Notably, animals with cocaine-associated alterations in dopamine signals for reward magnitude failed to subsequently discriminate between reward options. These findings suggest that cocaine self-administration alters the ability for dopamine signals to appropriately assign value to rewards and thus may in part contribute to later deficits in behaviors that depend on appropriate outcome valuation.


Subject(s)
Behavior, Animal/physiology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Dopamine/metabolism , Nucleus Accumbens/metabolism , Reward , Animals , Behavior, Animal/drug effects , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Male , Rats , Rats, Sprague-Dawley
11.
eNeuro ; 3(5)2016.
Article in English | MEDLINE | ID: mdl-27752541

ABSTRACT

Repeated self-administration of cocaine is associated with impairments in motivated behaviors as well as alterations in both dopamine (DA) release and neural signaling within the nucleus accumbens (NAc). These impairments are present even after several weeks of abstinence from drug taking, suggesting that the self-administration experience induces long-lasting neuroplastic alterations in the mesolimbic DA circuit. To understand these changes at the terminal level, rats were allowed to self-administer either cocaine intravenously (∼1 mg/kg per infusion) or water to a receptacle (control) in 2-h sessions over 14 days, followed by 30 days of enforced abstinence. Fast-scan cyclic voltammetry was used to record real-time DA release in either NAc core or shell after electrical stimulations of the ventral tegmental area (VTA) in freely-moving animals. In controls, the kinetics of DA release in the core and shell strikingly differed, with shell displaying slower release and reuptake rates than core. However, cocaine experience differentially altered these signaling patterns by NAc subregion. In the shell, cocaine rats showed less sensitivity to the dynamic range of applied stimulations than controls. In the core, by contrast, cocaine rats displayed robustly reduced peak DA release given the same stimulation, while also showing slower release and reuptake kinetics. The differential effects of cocaine self-administration on terminal function between core and shell is consistent with a region-specific functional reorganization of the mesolimbic DA system after repeated exposure and may provide an anatomical substrate for altered cognitive function after chronic drug-taking and addiction.


Subject(s)
Cocaine-Related Disorders/metabolism , Dopamine/metabolism , Nucleus Accumbens/metabolism , Substance Withdrawal Syndrome/metabolism , Animals , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Drinking Water/administration & dosage , Electric Stimulation , Male , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Nucleus Accumbens/drug effects , Random Allocation , Rats, Sprague-Dawley , Self Administration , Ventral Tegmental Area/metabolism
12.
eNeuro ; 3(5)2016.
Article in English | MEDLINE | ID: mdl-27785462

ABSTRACT

Exposure to uncontrollable stress [inescapable tailshock (IS)] produces behavioral changes that do not occur if the stressor is controllable [escapable tailshock (ES)] an outcome that is mediated by greater IS-induced dorsal raphe nucleus (DRN) serotonin [5-hydroxytryptamine (5-HT)] activation. It has been proposed that this differential activation occurs because the presence of control leads to top-down inhibition of the DRN from medial prefrontal cortex (mPFC), not because uncontrollability produces greater excitatory input. Although mPFC inhibitory regulation over DRN 5-HT activation has received considerable attention, the relevant excitatory inputs that drive DRN 5-HT during stress have not. The lateral habenula (LHb) provides a major excitatory input to the DRN, but very little is known about the role of the LHb in regulating DRN-dependent behaviors. Here, optogenetic silencing of the LHb during IS blocked the typical anxiety-like behaviors produced by IS in male rats. Moreover, LHb silencing blocked the increase in extracellular basolateral amygdala 5-HT during IS and, surprisingly, during behavioral testing the following day. We also provide evidence that LHb-DRN pathway activation is not sensitive to the dimension of behavioral control. Overall, these experiments highlight a critical role for LHb in driving DRN activation and 5-HT release into downstream circuits that mediate anxiety-like behavioral outcomes of IS and further support the idea that behavioral control does not modulate excitatory inputs to the DRN.


Subject(s)
Dorsal Raphe Nucleus/metabolism , Habenula/metabolism , Stress, Psychological/metabolism , Animals , Anxiety/metabolism , Basolateral Nuclear Complex/metabolism , Electroshock , Male , Neural Pathways/metabolism , Neurons/metabolism , Optogenetics , Proto-Oncogene Proteins c-fos/metabolism , Random Allocation , Rats, Sprague-Dawley , Serotonin/metabolism , Social Behavior
13.
Hippocampus ; 26(9): 1213-30, 2016 09.
Article in English | MEDLINE | ID: mdl-27101786

ABSTRACT

This is the second of two studies detailing the subcortical connections of the perirhinal (PER), the postrhinal (POR) and entorhinal (EC) cortices of the rat. In the present study, we analyzed the subcortical efferents of the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA). Anterograde tracers were injected into these five regions, and the resulting density of fiber labeling was quantified in an extensive set of subcortical structures. Density and topography of fiber labeling were quantitatively assessed in 36 subcortical areas, including olfactory structures, claustrum, amygdala nuclei, septal nuclei, basal ganglia, thalamic nuclei, and hypothalamic structures. In addition to reporting the density of labeled fibers, we incorporated a new method for quantifying the size of anterograde projections that takes into account the volume of the target subcortical structure as well as the density of fiber labeling. The PER, POR, and EC displayed unique patterns of projections to subcortical areas. Interestingly, all regions examined provided strong input to the basal ganglia, although the projections arising in the PER and LEA were stronger and more widespread. PER areas 35 and 36 exhibited similar pattern of projections with some differences. PER area 36 projects more heavily to the lateral amygdala and much more heavily to thalamic nuclei including the lateral posterior nucleus, the posterior complex, and the nucleus reuniens. Area 35 projects more heavily to olfactory structures. The LEA provides the strongest and most widespread projections to subcortical structures including all those targeted by the PER as well as the medial and posterior septal nuclei. POR shows fewer subcortical projections overall, but contributes substantial input to the lateral posterior nucleus of the thalamus. The MEA projections are even weaker. Our results suggest that the PER and LEA have greater influence over olfactory, amygdala, and septal nuclei, whereas PER area 36 and the POR have greater influence over thalamic nuclei. © 2016 Wiley Periodicals, Inc.


Subject(s)
Entorhinal Cortex/cytology , Neurons, Efferent/cytology , Perirhinal Cortex/cytology , Animals , Efferent Pathways/cytology , Male , Neuroanatomical Tract-Tracing Techniques , Rats, Sprague-Dawley
14.
J Neurosci ; 36(1): 235-50, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26740664

ABSTRACT

Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT: Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity.


Subject(s)
Behavior, Addictive/chemically induced , Behavior, Addictive/physiopathology , Cocaine-Related Disorders/physiopathology , Cocaine/poisoning , Dopamine/metabolism , Nucleus Accumbens/metabolism , Animals , Cocaine/administration & dosage , Cocaine-Related Disorders/etiology , Conditioning, Classical/drug effects , Male , Rats , Rats, Sprague-Dawley , Reward , Self Medication , Synaptic Transmission
15.
Anal Chem ; 87(22): 11484-91, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26477708

ABSTRACT

Principal component regression, a multivariate calibration technique, is an invaluable tool for the analysis of voltammetric data collected in vivo with acutely implanted microelectrodes. This method utilizes training sets to separate cyclic voltammograms into contributions from multiple electroactive species. The introduction of chronically implanted microelectrodes permits longitudinal measurements at the same electrode and brain location over multiple recordings. The reliability of these measurements depends on a consistent calibration methodology. One published approach has been the use of training sets built with data from separate electrodes and animals to evaluate neurochemical signals in multiple subjects. Alternatively, responses to unpredicted rewards have been used to generate calibration data. This study addresses these approaches using voltammetric data from three different experiments in freely moving rats obtained with acutely implanted microelectrodes. The findings demonstrate critical issues arising from the misuse of principal component regression that result in significant underestimates of concentrations and improper statistical model validation that, in turn, can lead to inaccurate data interpretation. Therefore, the calibration methodology for chronically implanted microelectrodes needs to be revisited and improved before measurements can be considered reliable.


Subject(s)
Electrochemical Techniques , Principal Component Analysis , Animals , Behavior, Animal , Calibration , Electrodes , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results
16.
J Neurosci ; 35(33): 11572-82, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26290234

ABSTRACT

Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT: Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors.


Subject(s)
Anticipation, Psychological/physiology , Appetite/physiology , Dopamine/metabolism , Motivation/physiology , Nucleus Accumbens/physiology , Reward , Animals , Extinction, Psychological/physiology , Male , Neurotransmitter Agents/metabolism , Rats , Rats, Sprague-Dawley
17.
Biol Psychiatry ; 77(10): 903-911, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25541492

ABSTRACT

BACKGROUND: To make appropriate choices, organisms must weigh the costs and benefits of potential valuable outcomes, a process known to involve the nucleus accumbens (NAc) and its dopaminergic input. However, it is currently unknown if dopamine dynamically tracks alterations in expected reward value online as behavioral preferences change and if so, if it is causally linked to specific components of value such as reward magnitude and/or delay to reinforcement. METHODS: Electrochemical methods were used to measure subsecond NAc dopamine release during a delay discounting task where magnitude was fixed but delay varied across blocks (n = 7 rats). Next, to assess whether this dopamine signaling was causally related to specific components of choice behavior, we employed selective optogenetic stimulation of dopamine terminals in the NAc using a modified delay discounting task in which both delay and magnitude varied independently (n = 23 rats). RESULTS: Cues predictive of available choices evoked dopamine release that scaled with the rat's preferred choices and dynamically shifted as delay to reinforcement for the large reward increased. In the second experiment, dopamine signaling was causally related to features of decision making, as optogenetically enhanced dopamine release within the NAc during predictive cue presentation was sufficient to alter subsequent value-related choices. Importantly, this dopamine-mediated shift in choice was limited to delay-based, but not magnitude-based, decisions. CONCLUSIONS: These findings indicate that NAc dopamine dynamically tracks delay discounting and establishes a causal role for this signaling in a subset of value-based associative strategies.


Subject(s)
Decision Making/physiology , Dopamine/physiology , Nucleus Accumbens/physiology , Reward , Animals , Delay Discounting/physiology , Dopamine/metabolism , Male , Nucleus Accumbens/metabolism , Optogenetics , Rats, Long-Evans , Rats, Sprague-Dawley
18.
Behav Neurosci ; 128(5): 567-578, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25244086

ABSTRACT

Reinforcement-based learning models predict that the strength of association between cues and outcomes is driven by aspects of outcome value. However, animals routinely make associations between contingent stimuli in the world, even if those associations hold no value to the organism. At the neural level, the nucleus accumbens (NAc) is known to encode associative information, but it is not known whether this encoding is specific for value-based information (consistent with reinforcement-based models) or if the NAc additionally plays a more general role in forming predictive associations, independent of outcome value. To test this, we employed a sensory preconditioning (SPC) task where rats initially (Preconditioning) received either contingent pairings of 2 neutral stimuli (e.g., tone [A] and light [X]; "Paired"), or random noncontingent presentations ("Unpaired"). After cue X was subsequently conditioned with food (First-Order Conditioning), the effect of preconditioning was assessed in Phase 3 (Test) by presentations of cue A alone. Electrophysiological recordings from the NAc core showed significant increases in phasic encoding for the stimuli in the Paired (but not Unpaired) condition as well as during test. Further, these effects were only seen in Paired rats that showed successful behavior during test (Good Learners), but not those who did not (Poor Learners) or Unpaired controls. These findings reveal a role for the NAc in the encoding of associative contingencies independent of value, and suggest that this structure also plays a more general role in forming associations necessary for predictive behavior.


Subject(s)
Association Learning/physiology , Conditioning, Psychological/physiology , Neurons/physiology , Nucleus Accumbens/physiology , Action Potentials , Animals , Individuality , Male , Microelectrodes , Neural Inhibition/physiology , Neuropsychological Tests , Rats, Sprague-Dawley
19.
Eur J Neurosci ; 39(11): 1891-902, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24690012

ABSTRACT

Cocaine stimuli often trigger relapse of drug-taking, even following periods of prolonged abstinence. Here, electrophysiological recordings were made in rats (n = 29) to determine how neurons in the prelimbic (PrL) or infralimbic (IL) regions of the medial prefrontal cortex (mPFC) encode cocaine-associated stimuli and cocaine-seeking, and whether this processing is differentially altered after 1 month of cocaine abstinence. After self-administration training, neurons (n = 308) in the mPFC were recorded during a single test session conducted either the next day or 1 month later. Test sessions consisted of three phases during which (i) the tone-houselight stimulus previously paired with cocaine infusion during self-administration was randomly presented by the experimenter, (ii) rats responded on the lever previously associated with cocaine during extinction and (iii) the tone-houselight was presented randomly between cocaine-reinforced responding during resumption of cocaine self-administration. PrL neurons showed enhanced encoding of the cocaine stimulus and drug-seeking behavior (under extinction and self-administration) following 30 days of abstinence. In contrast, although IL neurons encoded cocaine cues and cocaine-seeking, there were no pronounced changes in IL responsiveness following 30 days of abstinence. Importantly, cue-related changes do not represent a generalised stimulus-evoked discharge as PrL and IL neurons in control animals (n = 4) exhibited negligible recruitment by the tone-houselight stimulus. The results support the view that, following abstinence, neural encoding in the PrL but not IL may play a key role in enhanced cocaine-seeking, particularly following re-exposure to cocaine-associated cues.


Subject(s)
Cocaine-Related Disorders/physiopathology , Cocaine/pharmacology , Cues , Drug-Seeking Behavior , Prefrontal Cortex/physiopathology , Action Potentials , Animals , Cocaine/administration & dosage , Conditioning, Classical , Extinction, Psychological , Generalization, Psychological , Limbic System/physiopathology , Male , Neurons/physiology , Organ Specificity , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Self Administration , Time Factors
20.
Biol Psychiatry ; 75(2): 156-64, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24035479

ABSTRACT

BACKGROUND: Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. METHODS: Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. RESULTS: Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. CONCLUSIONS: The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety.


Subject(s)
Action Potentials/physiology , Cocaine/pharmacology , Conditioning, Classical/physiology , Neurons/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Action Potentials/drug effects , Animals , Cocaine/administration & dosage , Conditioning, Classical/drug effects , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Cues , Male , Neurons/drug effects , Rats , Reward , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL