Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 98(4): e0201523, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38451083

ABSTRACT

Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE: Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.


Subject(s)
Chromatin , Epigenesis, Genetic , Gene Expression Regulation, Viral , Herpesvirus 1, Human , Histones , Viral Transcription , Virus Replication , Chromatin/genetics , Chromatin/metabolism , Gene Silencing , Genetic Variation , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/physiology , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Virus Activation , Virus Latency , Humans , Animals , Vero Cells , HEK293 Cells
2.
J Virol ; 97(6): e0009023, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37199627

ABSTRACT

Canine parvovirus (CPV) is a small nonenveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late 1970s due to a host range switch of a virus similar to the feline panleukopenia virus that infected another host. The virus that emerged in dogs had altered capsid receptor and antibody binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we used in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bound two distinct epitopes, and one largely overlapped the host receptor binding site. We also generated mutated antibody variants with altered binding structures. Viruses were passaged with wild-type (WT) or mutated antibodies, and their genomes were deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the transferrin receptor type 1 binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we used an in vitro model system and deep genome sequencing to reveal the mutations that arose in the virus genome during selection by each of two monoclonal antibodies or their mutated variants. High-resolution structures of each of the Fab:capsid complexes revealed their binding interactions. The wild-type antibodies or their mutated variants allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and they likely have parallels for many other viruses.


Subject(s)
Antibodies, Viral , Binding Sites, Antibody , Capsid , Parvovirus, Canine , Animals , Dogs , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Epitopes/genetics , Epitopes/analysis , Parvovirus, Canine/genetics , Parvovirus, Canine/metabolism , Mutation , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Binding Sites, Antibody/genetics , High-Throughput Nucleotide Sequencing , Antigens, Viral/metabolism , Selection, Genetic
3.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711712

ABSTRACT

Canine parvovirus (CPV) is a small non-enveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late-1970s due to a host range switch of a virus similar to the feline panleukopenia virus (FPV) that infected another host. The virus that emerged in dogs had altered capsid receptor- and antibody-binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we use in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bind two distinct epitopes, and one largely overlaps the host receptor binding site. We also engineered antibody variants with altered binding structures. Viruses were passaged with the wild type or mutated antibodies, and their genomes deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the TfR-binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE: Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we use an in vitro model system and deep genome sequencing to reveal the mutations that arise in the virus genome during selection by each of two monoclonal antibodies or their engineered variants. High-resolution structures of each of the Fab: capsid complexes revealed their binding interactions. The engineered forms of the wild-type antibodies or mutant forms allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and likely have parallels for many other viruses.

4.
bioRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38187672

ABSTRACT

Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections, but the precise mechanisms are not fully defined. Nucleosomes are dynamic; they slide, breathe, assemble and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X and macroH2A were enhanced in infected cells, whereas those of H2A.B uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, ectopic, and endogenous H2B, were assembled into HSV-1 chromatin evenly throughout the genome, but canonical H2A was relatively depleted from the viral chromatin whereas H2A.B was enriched in the most dynamic viral chromatin. When viral transcription was restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency, and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. Importance: HSV-1 transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed mechanisms of regulation of HSV-1 transcription by epigenetics have not been fully characterized and may differ from those regulating cellular transcription. In particular, the lytic HSV-1 chromatin is unusually dynamic, whereas the latent silenced one is not, but the mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment on the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding for its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.

SELECTION OF CITATIONS
SEARCH DETAIL
...