Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Exp Mol Pathol ; 137: 104897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691979

ABSTRACT

BACKGROUND: Signaling by toll-like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. MATERIAL & METHODS: 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex-matched healthy control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8, and 9 agonists, the spike protein (SP) of SARS-CoV-2, and the receptor binding domain (RBD) of SP. Frequencies of CD3+IFN-ß+ T cells, and CD3+IFN-γ+ T cells were evaluated by flow cytometry. Interferon (IFN)-ß gene expression was assessed by qRT-PCR. RESULTS: The frequency of CD3+IFN-ß+ T cells was higher in PBMCs from moderate (p < 0.0001) and severe (p = 0.009) patients at baseline in comparison with HCs. The highest increase in the frequency of CD3+IFN-ß+ T cells in cell from moderate patients was induced by TLR8 agonist and SP (p < 0.0001 for both) when compared to HC, while, the highest increase of the frequency of CD3+IFN-ß+ T cells in sample of severe patients was seen with TLR8 and TLR7 agonists (both p = 0.002). The frequency of CD3+IFN-γ+ T cells was significantly increased upon stimulation with TLR agonists in cell from patients with moderate and severe COVID-19, compared with HC (all p < 0.01), except with TLR7 and TLR8 agonists. The TLR8 agonist did not significantly increase the frequency of CD3+IFN-γ+ T cells in PBMCs of severe patients, but did so in cells from patients with moderate disease (p = 0.01). Moreover, IFN-ß gene expression was significantly upregulated in CD3+T cells from moderate (p < 0.0001) and severe (p = 0.002) COVID-19 patients, compared to HC after stimulation with the TLR8 agonist, while, stimulation of T cells with SP, significantly up-regulated IFN-ß mRNA expression in cells from patients with moderate (p = 0.0003), but not severe disease. CONCLUSION: Stimulation of PBMCs from COVID-19 patients, especially patients with moderate disease, with TLR8 agonist and SP increased the frequency of IFN-ß-producing T cells and IFN-ß gene expression.


Subject(s)
CD3 Complex , COVID-19 , SARS-CoV-2 , T-Lymphocytes , Toll-Like Receptors , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Male , Female , Middle Aged , Toll-Like Receptors/agonists , Toll-Like Receptors/genetics , CD3 Complex/immunology , CD3 Complex/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , Adult , Interferon-gamma/metabolism , Interferon-gamma/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Interferon-beta/genetics , Interferon-beta/immunology , Aged , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Toll-Like Receptor Agonists
2.
Heliyon ; 10(9): e30025, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737273

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory process in the airways that results in airflow obstruction. It is mainly linked to cigarette smoke exposure. Th17 cells have a role in the pathogenesis of COPD by secreting pro-inflammatory cytokines, which cause hyperinflammation and progression of the disease. This study aimed to assess the potential therapeutic effects of nanocurcumin on the Th17 cell frequency and its responses in moderate and severe COPD patients. This study included 20 patients with severe COPD hospitalized in an intensive care unit (ICU) and 20 patients with moderate COPD. Th17 cell frequency, Th17-related factors gene expression (RAR-related orphan receptor t (RORγt), IL-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and serum levels of Th17-related cytokines were assessed before and after treatment in both placebo and nanocurcumin-treated groups using flow cytometry, real-time PCR, and ELISA, respectively. According to our findings, in moderate and severe nanocurcumin-treated COPD patients, there was a substantial reduction in the frequency of Th17 cells, mRNA expression, and cytokines secretion level of Th17-related factors compared to the placebo group. Furthermore, after treatment, the metrics mentioned above were considerably lower in the nanocurcumin-treated group compared to before treatment. Nanocurcumin has been shown to decrease the number of Th17 cells and their related inflammatory cytokines in moderate and severe COPD patients. As a result, it might be used as an immune-modulatory agent to alleviate the patient's inflammatory state.

3.
Eur J Pharmacol ; 933: 175267, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36122756

ABSTRACT

The ongoing COVID-19 pandemic is still a challenging problem in the case of infection treatment. The immunomodulatory effect of Nanocurcumin was investigated in the present study in an attempt to counterbalance the immune response and improve the patients' clinical symptoms. 60 confirmed COVID-19 patients and 60 healthy controls enrolled in the study. COVID-19 patients were divided into Nanocurcumin and placebo received groups. Due to the importance of the role of NK cells in this disease, the frequency, cytotoxicity, receptor gene expression of NK cells, and serum secretion levels of inflammatory cytokines IL-1ß, IL-6, TNF-α, as well as circulating C5a as a chemotactic factor an inflammatory mediator was evaluated by flow cytometry, real-time PCR and enzyme-linked immunosorbent assay in both experimental groups before and after the intervention. Given the role of measured factors in the progression and pathogenesis of COVID-19 disease, the results can help find appropriate treatments. The results of this study indicated that the Nanocurcumin could significantly increase the frequency and function of NK cells compared to the placebo-treated group. As an immunomodulatory agent, Nanocurcumin may be a helpful choice to improve NK cell function in COVID-19 patients and improve the clinical outcome of patients.


Subject(s)
COVID-19 Drug Treatment , Case-Control Studies , Chemotactic Factors/pharmacology , Cytokines/metabolism , Humans , Immunity , Inflammation Mediators/pharmacology , Interleukin-6 , Killer Cells, Natural , Pandemics , Tumor Necrosis Factor-alpha/metabolism
4.
Stem Cell Res Ther ; 13(1): 262, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725505

ABSTRACT

Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, are one of the most frequent causes of morbidity and mortality in the global. COPD is characterized by progressive loss of lung function through inflammation, apoptosis, and oxidative stress caused by chronic exposure to harmful environmental pollutants. Airway inflammation and epithelial remodeling are also two main characteristics of asthma. In spite of extensive efforts from researchers, there is still a great need for novel therapeutic approaches for treatment of these conditions. Accumulating evidence suggests the potential role of mesenchymal stem cells (MSCs) in treatment of many lung injuries due to their beneficial features including immunomodulation and tissue regeneration. Besides, the therapeutic advantages of MSCs are chiefly related to their paracrine functions such as releasing extracellular vesicles (EVs). EVs comprising exosomes and microvesicles are heterogeneous bilayer membrane structures loaded with various lipids, nucleic acids and proteins. Due to their lower immunogenicity, tumorigenicity, and easier management, EVs have appeared as favorable alternatives to stem cell therapies. Therefore, in this review, we provided an overview on the current understanding of the importance of MSCs and MSC-derived EVs from different sources reported in preclinical and clinical COPD and asthmatic models.


Subject(s)
Asthma , Extracellular Vesicles , Mesenchymal Stem Cells , Pulmonary Disease, Chronic Obstructive , Asthma/therapy , Extracellular Vesicles/metabolism , Humans , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Pulmonary Disease, Chronic Obstructive/therapy
5.
Inflammopharmacology ; 30(4): 1277-1282, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35723849

ABSTRACT

Cytokine storm is the most prominent hallmark in patients with coronavirus disease 2019 (COVID-19) that stimulates the free radical storm, both of which induce an overactive immune response during viral infection. We hypothesized that owning to its radical-scavenging and anti-inflammatory properties, Edaravone could reduce multi-organ injury, clinical complications, and mortality in severe COVID-19 cases. This single-center randomized clinical trial was accompanied in the intensive care units (ICUs) of the teaching hospital of Tabriz University of Medical Sciences to evaluate the effect of Edaravone on the outcome of patients with severe COVID-19. Thirty-eight patients admitted to ICU were included and randomized into two control and intervention arms. Patients in the intervention group received 30 mg Edaravone by slow intravenous infusion for three days in addition to receiving national therapy. The primary outcome was the need for intubation, the intubation length, and mortality rate. Secondary endpoints were clinical improvement. Edaravone administration improved the primary outcomes; it decreased the need for endotracheal intubation and mechanical ventilation [10.52% (n = 2) versus 42.1% (n = 8); p = 0.03] and intubation length [3 (1-7) versus 28 (4-28), p = 0.04] compared to control group. Baseline characteristics and laboratory tests were similar between the studied groups. No marked differences were observed in secondary endpoints (p > 0.05). Administration of Edaravone could decrease the need for mechanical ventilation and length of intubation in severe COVID-19 patients admitted to ICU.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome , Edaravone , Humans , Intensive Care Units , SARS-CoV-2
7.
Clin Case Rep ; 9(12): e05146, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917367

ABSTRACT

Thromboembolic events have been reported in the hospitalized patient since the beginning of the COVID-19 pandemics. ICU-admitted patients demonstrated a significantly higher risk of developing VTE. Although evidence of arterial thrombosis was less common in ICU-admitted patients, consequences were typically more severe, including limb loss and death. This study reports another ICU-admitted patient with lower extremity arterial thrombosis diagnosed with COVID-19.

8.
Int J Clin Pract ; 75(12): e14869, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34525236

ABSTRACT

OBJECTIVE: This study aimed to investigate the relationship between chest computed tomography (CT) scan findings with sequential organ failure assessment (SOFA) score, C-reactive protein (CRP), comorbidity, and mortality in intensive care unit (ICU) patients with coronavirus disease 19 (COVID-19). METHOD: Adult patients (≥18 years old) with COVID-19 who were consecutively admitted to the Imam-Reza Hospital, Tabriz, East-Azerbaijan Province, North-West of Iran between March 2020 and August 2020 were screened and total of 168 patients were included. Demographic, clinical, and mortality data were gathered. Severity of disease was evaluated using the SOFA score system. CRP levels were measured and chest CT scans were performed. RESULTS: Most of patients had multifocal and bilateral ground glass opacity (GGO) pattern in chest CT scan. There were significant correlations between SOFA score on admission with multifocal and bilateral GGO (P = .010 and P = .011, respectively). Significant relationships were observed between unilateral and bilateral GGO patterns with CRP (P = .049 and P = .046, respectively). There was significant relationship between GGO patterns with comorbidities including overweight/obesity, heart failure, cardiovascular diseases, and malignancy (P < .05). No significant relationships were observed between chest CT scan results with mortality (P > .05). CONCLUSION: Multifocal bilateral GGO was the most common pattern. Although chest CT scan characteristics were significantly related with SOFA score, CRP, and comorbidity in ICU patients with COVID-19, a relationship with mortality was not significant.


Subject(s)
COVID-19 , Adolescent , Adult , C-Reactive Protein , Comorbidity , Humans , Intensive Care Units , Lung , Organ Dysfunction Scores , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
9.
Life Sci ; 276: 119437, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33789145

ABSTRACT

In Coronavirus disease 2019 (COVID-19), a decreased number of regulatory T (Treg) cells and their mediated factors lead to a hyperinflammatory state due to overactivation of the inflammatory cells and factors during the infection. In the current study, we evaluated the Nanocurcumin effects on the Treg cell population and corresponding factors in mild and severe COVID-19 patients. To investigate the Nanocurcumin effects, 80 COVID-19 patients (40 at the severe stage and 40 at the mild stage) were selected and classified into Nanocurcumin and placebo arms. In both the Nanocurcumin and placebo groups, the Treg cell frequency, the gene expression of Treg transcription factor forkhead box P3 (FoxP3), and cytokines (IL-10, IL-35, and TGF-ß), as well as the serum levels of cytokines were measured before and after treatment. In both mild and severe COVID-19 patients, Nanocurcumin could considerably upregulate the frequency of Treg cells, the expression levels of FoxP3, IL-10, IL-35, and TGF-ß, as well as the serum secretion levels of cytokines in the Nanocurcumin-treated group compared to the placebo group. The abovementioned factors were remarkably increased in the post-treatment with Nanocurcumin before pre-treatment conditions. By contrast, it has been observed no notable alteration in the placebo group. Our findings revealed the SinaCurcumin® effective function in a significant increase in the number of Treg cells and their mediated factors in the Nanocurcumin group than in the placebo group in both mild and severe patients. Hence, it would be an efficient therapeutic agent in rehabilitating COVID-19 infected patients.


Subject(s)
COVID-19 Drug Treatment , Curcumin/pharmacology , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , COVID-19/immunology , COVID-19/virology , Cytokines/drug effects , Cytokines/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Humans , Interleukin-10/immunology , Interleukins/immunology , Male , Middle Aged , Nanomedicine/methods , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology
10.
Int J Clin Pract ; 75(6): e14124, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33650197

ABSTRACT

BACKGROUND: Controversy exists regarding the drug selection in hypertension (HTN) management in patients with COVID-19. This study aimed to compare the effects of losartan and amlodipine in patients with primary HTN and COVID-19. METHODS: In this randomised clinical trial, hospitalised patients with COVID-19 and primary HTN were enrolled in the study. One arm received losartan, 25 mg, twice a day and the other arm received amlodipine, 5 mg per day for 2 weeks. The main outcomes were compare 30-day mortality rate and length of hospital stay. RESULTS: The mean age of patients treated with losartan (N = 41) and amlodipine (N = 39) was 67.3 ± 14.8 and 60.1 ± 17.3 years, respectively (P value = .068). The length of hospital stay in losartan and amlodipine groups was 4.57 ± 2.59 and 7.30 ± 8.70 days, respectively (P value = .085). Also, the length of ICU admission in losartan and amlodipine group was 7.13 ± 5.99 and 7.15 ± 9.95 days, respectively (P value = .994). The 30-day mortality was two and five patients in losartan and amlodipine groups, respectively (P value = .241). CONCLUSIONS: There was no priority in losartan or amlodipine administration in COVID-19 patients with primary HTN in decreasing mortality rate, hospital and ICU length stay. Further studies need to clarify the first-line anti-HTN medications in COVID-19.


Subject(s)
COVID-19 , Hypertension , Aged , Aged, 80 and over , Amlodipine/therapeutic use , Antihypertensive Agents/therapeutic use , Blood Pressure , Double-Blind Method , Humans , Hypertension/drug therapy , Losartan/pharmacology , Losartan/therapeutic use , Middle Aged , SARS-CoV-2 , Treatment Outcome
11.
J Cell Physiol ; 236(4): 2829-2839, 2021 04.
Article in English | MEDLINE | ID: mdl-32926425

ABSTRACT

In the course of the coronavirus disease 2019 (COVID-19), raising and reducing the function of Th17 and Treg cells, respectively, elicit hyperinflammation and disease progression. The current study aimed to evaluate the responses of Th17 and Treg cells in COVID-19 patients compared with the control group. Forty COVID-19 intensive care unit (ICU) patients were compared with 40 healthy controls. The frequency of cells, gene expression of related factors, as well as the secretion levels of cytokines, were measured by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay techniques, respectively. The findings revealed a significant increase in the number of Th17 cells, the expression levels of related factors (RAR-related orphan receptor gamma [RORγt], IL-17, and IL-23), and the secretion levels of IL-17 and IL-23 cytokines in COVID-19 patients compared with controls. In contrast, patients had a remarkable reduction in the frequency of Treg cells, the expression levels of correlated factors (Forkhead box protein P3 [FoxP3], transforming growth factor-ß [TGF-ß], and IL-10), and cytokine secretion levels (TGF-ß and IL-10). The ratio of Th17/Treg cells, RORγt/FoxP3, and IL-17/IL-10 had a considerable enhancement in patients compared with the controls and also in dead patients compared with the improved cases. The findings showed that enhanced responses of Th17 cells and decreased responses of Treg cells in 2019-n-CoV patients compared with controls had a strong relationship with hyperinflammation, lung damage, and disease pathogenesis. Also, the high ratio of Th17/Treg cells and their associated factors in COVID-19-dead patients compared with improved cases indicates the critical role of inflammation in the mortality of patients.


Subject(s)
COVID-19/immunology , Inflammation/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Aged , Cytokines/immunology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/immunology
12.
Int Immunopharmacol ; 89(Pt B): 107088, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33129099

ABSTRACT

BACKGROUND: As an ongoing worldwide health issue, Coronavirus disease 2019 (COVID-19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients. METHOD: Forty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1ß, IL-6, TNF-α and IL-18 were assessed by Real-time PCR and ELISA, respectively. RESULT: Our primary results indicated that the mRNA expression and cytokine secretion of IL-1ß, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1ß gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin. CONCLUSION: Nano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1ß and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Cytokines/blood , SARS-CoV-2 , Adult , Aged , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , Cytokines/genetics , Double-Blind Method , Female , Humans , Male , Micelles , Middle Aged , Nanotechnology , RNA, Messenger/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...