Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 131207, 2024 May.
Article in English | MEDLINE | ID: mdl-38552687

ABSTRACT

This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.


Subject(s)
Bandages , Polysaccharides , Printing, Three-Dimensional , Wound Healing , Humans , Wound Healing/drug effects , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Tissue Scaffolds/chemistry , Skin/drug effects , Skin/metabolism , Polymers/chemistry , Proteins/chemistry , Biocompatible Materials/chemistry , Animals
2.
J Biomater Sci Polym Ed ; 35(2): 127-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37837633

ABSTRACT

Electrospinning is a facile popular method for the creation of nano-micro fibers tissue engineering scaffolds. Here, polycaprolactone (PCL)/collagen (COL): polyvinyl pyrrolidone (PVP) scaffolds (PCL/COL: PVP) were fabricated for bone regeneration. Various concentrations of Cephalexin (CEF) (0.5, 1, 1.5 wt. %) were added to PCL/COL: PVP scaffold to provide an antibacterial scaffold, and different concentrations of hydroxyapatite (HA) (1, 2, 5 wt. %) was electrospray on the surface of the scaffolds. The PCL/COL: PVP scaffold contained 1.5% CEF and coated with 2% HA was introduced as the best sample and in-vitro tests were performed on this scaffold based on the antibacterial and MTT test results. Morphology observations demonstrated a bead-free uniform combined nano-micro fibrous structure. Fourier transform infrared spectroscopy and X-ray diffraction tests confirmed the successful formation of the scaffolds and the wettability, swelling, and biodegradability evaluations of the scaffolds confirmed the hydrophilicity nature of the scaffold with high swelling properties and suitable biodegradation ratio. The scaffolds supported cell adhesion and represented high alkaline phosphatase activity. CEF loading led to antibacterial properties of the designed scaffolds and showed a suitable sustained release rate within 48 h. It seems that the electrospun PCL/COL: PVP scaffold loaded with 1.5% CEF and coated with 2% HA can be useful for bone regeneration applications that need further evaluation in the near future.


Subject(s)
Durapatite , Polyvinyls , Durapatite/chemistry , Polyvinyls/pharmacology , Cephalexin/pharmacology , Tissue Scaffolds/chemistry , Collagen/chemistry , Polyesters/chemistry , Tissue Engineering/methods , Bone Regeneration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Proliferation
3.
Ann Biomed Eng ; 51(8): 1683-1712, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37261588

ABSTRACT

Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.


Subject(s)
Bioprinting , Tissue Engineering , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Biocompatible Materials , Technology
4.
J Biomater Sci Polym Ed ; 34(3): 351-371, 2023 02.
Article in English | MEDLINE | ID: mdl-36063005

ABSTRACT

This study investigated the release characteristics of curcumin (CUR)-loaded switchable poly(methyl methacrylate)-co-poly(N,N-diethylaminoethyl methacrylate) (PMMA-co-PDEAEMA) membranes following the application of various stimuli, as well as the platform's applicability in wound dressing and tissue engineering applications. The free-radical polymerization method was used to synthesize the PMMA-co-PDEAEMA copolymer. The drug-loaded nanofibrous membrane with electric potential (EP)-, CO2-, and pH-responsive properties was developed by the electrospinning of PMMA-co-PDEAEMA and CUR. The resulted structure was characterized by a scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy and wide-angle X-ray scattering measurements. The release characteristics of the CUR-loaded wound covering were analyzed in various simulated environments at varying voltages, alternated CO2/N2 gas bubbling, and at two different pH values; the results demonstrated high drug release controllability. Loaded CUR displayed high stability and better solubility compared with free CUR. The CUR-loaded tissue also exhibited high antibacterial activity against Escherichia coli and staphylococcus aureus bacteria. In addition, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay depicted high biocompatibility of up to 95% in the CUR-loaded membrane. This platform could be a promising candidate for usage in tissue engineering and medical applications such as targeted drug delivery, biodetection, reversible cell capture-and-release systems, and biosensors.


Subject(s)
Curcumin , Nanofibers , Polymethyl Methacrylate , Nanofibers/chemistry , Carbon Dioxide , Curcumin/pharmacology , Curcumin/chemistry , Hydrogen-Ion Concentration
5.
Int J Biol Macromol ; 218: 930-968, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35896130

ABSTRACT

The three-dimensional printing (3DP) also known as the additive manufacturing (AM), a novel and futuristic technology that facilitates the printing of multiscale, biomimetic, intricate cytoarchitecture, function-structure hierarchy, multi-cellular tissues in the complicated micro-environment, patient-specific scaffolds, and medical devices. There is an increasing demand for developing 3D-printed products that can be utilized for organ transplantations due to the organ shortage. Nowadays, the 3DP has gained considerable interest in the tissue engineering (TE) field. Polylactide (PLA) and polycaprolactone (PCL) are exemplary biomaterials with excellent physicochemical properties and biocompatibility, which have drawn notable attraction in tissue regeneration. Herein, the recent advancements in the PLA and PCL biodegradable polymer-based composites as well as their reinforcement with hydrogels and bio-ceramics scaffolds manufactured through 3DP are systematically summarized and the applications of bone, cardiac, neural, vascularized and skin tissue regeneration are thoroughly elucidated. The interaction between implanted biodegradable polymers, in-vivo and in-vitro testing models for possible evaluation of degradation and biological properties are also illustrated. The final section of this review incorporates the current challenges and future opportunities in the 3DP of PCL- and PLA-based composites that will prove helpful for biomedical engineers to fulfill the demands of the clinical field.


Subject(s)
Biocompatible Materials , Tissue Engineering , Biocompatible Materials/chemistry , Humans , Polyesters/chemistry , Polymers , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
6.
Int J Biol Macromol ; 204: 62-75, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35124017

ABSTRACT

Three-dimensional (3D) printed hydrogel scaffolds enhanced with ceramics have shown potential applications for cartilage regeneration, but leaving biological and mechanical properties to be desired. This paper presents our study on the development of chitosan /alginate scaffolds with nano hydroxyapatite (nHA) by combining 3D printing and impregnating techniques, forming a hybrid, yet novel, structure of scaffolds for potential cartilage regeneration. First, we incorporated nHA into chitosan scaffold printing and studied the printability by examining the difference between the printed scaffolds and their designs. Then, we impregnated alginate with nHA into the printed chitosan scaffolds to forming a hybrid structure of scaffolds; and then characterized the scaffolds mechanically and biologically, with a focus on identifying the influence of nHA and alginate for potential cartilage regeneration. The results of compression tests on the scaffolds showed that the inclusion of nHA increased the elastic moduli of scaffolds; while the live/dead assay illustrated that nHA had a great effect on improving attachment and viability of ATCD5 cells on the scaffolds. Also, our results illustrated scaffolds with nHA impregnated in alginate hydrogel enhanced the cell viability and attachment. Furthermore, antibacterial activity of hybrid scaffolds was characterized with results indicating that the chitosan scaffolds had favourable antibacterial ability, which was further enhanced with the impregnated nHA. Taken together, our study has illustrated that chitosan/HA/alginate hybrid scaffolds are promising for cartilage regeneration and the methods developed to create hybrid scaffolds based on 3D printing and impregnating techniques, which can also be extended to fabricating scaffolds for other tissue engineering applications.


Subject(s)
Chitosan , Durapatite , Alginates/chemistry , Cartilage , Chitosan/chemistry , Durapatite/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208039

ABSTRACT

Textiles coated with silver nanowires (AgNWs) are effective at suppressing radiative heat loss without sacrificing breathability. Many reports present the applicability of AgNWs as IR-reflective wearable textiles, where such studies partially evaluate the parameters for practical usage for large-scale production. In this study, the effect of the two industrial coating methods and the loading value of AgNWs on the performance of AgNWs-coated fabric (AgNWs-CF) is reported. The AgNWs were synthesized by the polyol process and applied onto the surface of cotton fabric using either dip- or spray-coating methods with variable loading levels of AgNWs. X-ray diffraction, scanning electron microscopy (SEM), infrared (IR) reflectance, water vapor permeability (WVP), and electrical resistance properties were characterized. The results report the successful synthesis of AgNWs with a 30 µm length. The results also show that the spray coating method has a better performance for reflecting the IR radiation to the body, which increases with a greater loading level of the AgNWs. The antibacterial results show a good inhibition zone for cotton fabric coated by both methods, where the spray-coated fabric has a better performance overall. The results also show the coated fabric with AgNWs maintains the level of fabric breathability similar to control samples. AgNWs-CFs have potential utility for cold weather protective clothing in which heat dissipation is attenuated, along with applications such as wound dressing materials that provide antibacterial protection.


Subject(s)
Cellulose/chemistry , Nanowires/chemistry , Polymers/chemistry , Silver/chemistry , Wearable Electronic Devices , Humans , Infrared Rays , Microscopy, Electrochemical, Scanning/methods , Skin Temperature , X-Ray Diffraction/methods
8.
Int J Biol Macromol ; 164: 3179-3192, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32853616

ABSTRACT

Researchers have looked to cartilage tissue engineering to address the lack of cartilage regenerative capability related to cartilage disease/trauma. For this, a promising approach is extrusion-based three-dimensional (3D) printing technique to deliver cells, biomaterials, and growth factors within a scaffold to the injured site. This paper evaluates the printability of chitosan scaffolds for a cartilage tissue engineering, with a focus on identifying the influence of drying technique implemented before crosslinking on the improvement of chitosan printability. First, the printability of chitosan with concentrations of 8%, 10%, and 12% (w/v) was evaluated and 10% chitosan was selected for further studies. Then, different drying methods, including air drying, warm drying, and vacuum drying followed by crosslinking, were used to study their effect on the mechanical properties of the 10% chitosan scaffolds. Our compression testing results showed the highest elastic modulus for the scaffolds crosslinked with the air-drying technique; as a major part of experiemtn, pore sizes were studies and scaffolds with smaller pore sizes showed higher elastic modulus. Additionally, the geometrical features of scaffolds were examined using a scanning electron microscopy (SEM) technique. The morphology of scaffolds, dried with the aformentioned methods, was assess using SEM images to evaluate the dimensional stability of scaffolds. Chondrocyte cells cultured on the 3D-printed chitosan scaffolds dried using the air-drying technique showed high cell attachment while retaining round cellular morphology. Also, the results of the cytotoxicity test indicated that there was proper biocompatibility of the chitosan for the ATDC5 cells. Results showed that the drying method plays a decisive role in the mechanical and biological behavior of chitosan scaffolds. Considering biological and mechanical properties, the proposed 3D-printed chitosan scaffold can be of a potential structure for cartilage tissue engineering applications.


Subject(s)
Cartilage/cytology , Cell Culture Techniques/methods , Chitosan/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Line, Tumor , Cells, Cultured , Materials Testing , Mice , Microscopy, Electron, Scanning , Printing, Three-Dimensional , Tissue Engineering
9.
J Biomater Appl ; 35(1): 135-145, 2020 07.
Article in English | MEDLINE | ID: mdl-32295469

ABSTRACT

Electrospinning polyurethane has been utilized as skin wound dressing for protecting skin wounds from infection and thus facilitating their healings, but also limited by its imperfect biocompatibility, mechanical and antibacterial properties. This paper presents our study on the addition of graphene oxide to electrospinning polyurethane for improved properties, as well as its in vitro characterization. Polyurethane/graphene oxide wound dressing was electrospun with varying amount of graphene oxide (from 0.0% to 2.0%); and in vitro tests was carried out to characterize the wound dressing properties and performance from the structural, mechanical, and biological perspectives. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used to confirm the interaction between graphene oxide particles and polyurethane fibers, while the scanning electron microscopy images further illustrated that the wound dressing was of a porous structure with fibre diameters depending on the amount of graphene oxide added; specifically, 20 to 180 nm were for composite polyurethane/graphene oxide fibers and 600 to 900 nm for pure polyurethane. Our results also revealed that the hydrophilicity and swelling properties of the wound dressing could be regulated by the amount of graphene oxide added to the polyurethane/graphene oxide composites. Mechanical, antibacterial, and cytotoxicity properties of the composite polyurethane/graphene oxide wound dressing were examined with the results illustrating that the addition of graphene oxide could improve the properties of the electrospun wound dressing. Combined together, our study illustrates that electrospinning polyurethane/graphene oxide composite is promising as skin wound dressing.


Subject(s)
Anti-Bacterial Agents/chemistry , Bandages , Biocompatible Materials/chemistry , Graphite/chemistry , Polyurethanes/chemistry , Wound Healing , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cells, Cultured , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Graphite/pharmacology , Humans , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Wound Healing/drug effects
10.
J Biomater Sci Polym Ed ; 31(2): 169-187, 2020 02.
Article in English | MEDLINE | ID: mdl-31609684

ABSTRACT

Materials and scaffolds with antimicrobial properties are of great importance in wound dressing and other tissue engineering applications. The objective of the present work was to fabricate scaffolds made from nanocomposites of polycaprolactone (PCL) and quaternary ammonium salt-modified montmorillonite (MMT) by the electrospinning technique, and then characterize their antimicrobial and other properties for wound dressing applications. The effect of MMT on the structure, morphology, and thermal behavior of the electrospun wound dressings was assessed by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM); the swelling capacity, antibacterial activity, and cytotoxicity were also evaluated. The results of XRD and SEM analyses showed MMT was successfully incorporated into the PCL polymeric matrix and its inclusion reduced the size and thickness of the electrospun fibers compared to pure PCL fibers. The TGA results illustrated an increase in the thermal stability of nanocomposites upon incorporation of nanoclay into the PCL matrix. The swelling capacity of the wound dressings was reduced by increasing the amount of MMT in the PCL matrix due to the increased hydrophobicity of the original MMT resulting from its modification with quaternary ammonium salt. The in vitro curcumin (Cur) release profile revealed an initial burst release followed by a sustained release, with the burst release level reduced by the introduction of MMT into the polymeric matrix. Increasing the nanoclay content further reduced the curcumin release, with the PCL/20% MMT/Cur dressings having the lowest curcumin release of all those tested. The beneficial effect of MMT on the antibacterial behavior of electrospun wound dressings based on PCL/MMT nanocomposites was confirmed, with the introduction of both MMT and curcumin into the PCL matrix resulting in lower bacterial viability. PCL/10% MMT/Cur demonstrated higher antimicrobial activity and the greatest bacterial colony reduction compared to both pure PCL and PCL/10% MMT. The cytotoxicity evaluation indicated low toxicity and confirmed the potential of PCL/MMT nanocomposite scaffolds for wound dressing applications.


Subject(s)
Bandages , Bentonite/chemistry , Curcumin/chemistry , Electricity , Nanocomposites/chemistry , Polyesters/chemistry , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Cell Line , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Carriers/toxicity , Drug Liberation , Escherichia coli/drug effects , Mice , Staphylococcus aureus/drug effects , Temperature
11.
Appl Biochem Biotechnol ; 191(2): 567-578, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31823274

ABSTRACT

Creating scaffolds for skin tissue engineering remain challenging in terms of their mechanical and biological properties. In this paper, we present a study on the nanocomposite polyurethane (PU)/polycaprolactone (PCL) scaffolds with graphene oxide (GO), which were fabricated by using electrospinning method, for potential skin tissue engineering. For this, homogenous and soft PU nanofibers containing varying percent of polycaprolactone (12% and 15%) and nano GO (0.5-4%) were electrospun, respectively, and then characterized by different techniques/assays in vitro. For the scaffold characterization, scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used. The SEM results show the spun scaffolds have 3D porous structure (90%) with the fiber diameter increased with the GO concentration, while the FTIR results confirmed the presence of PU, PCL, and Go in the scaffolds. Also, the biocompatibility, via the cytotoxicity, of the scaffolds was examined by MTT assay with the human skin fibroblast cells, along with their wettability in terms of contact angle. Our results show that the scaffolds are biocompatible to the skin fibroblast cell, illustrating their potential use in skin tissue engineering. Also, our results illustrate that the addition of GO to the PU/PCL composite can increase the wettability (or hydrophilicity) and biocompatibility of scaffolds. Combined together, the nanocomposite PU/PCL scaffolds with GO are promising as biocompatible constructs for skin tissue engineering.


Subject(s)
Graphite/chemistry , Nanocomposites/chemistry , Polyesters/chemistry , Polyurethanes/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Fibroblasts , Humans , Microscopy, Electron, Scanning , Nanofibers/chemistry , Porosity , Skin
12.
J Funct Biomater ; 10(2)2019 May 21.
Article in English | MEDLINE | ID: mdl-31117313

ABSTRACT

: Nanofibrous-based pH sensors have shown promise in a wide range of industrial and medical applications due to their fast response time and good mechanical properties. In the present study, we fabricated pH-sensitive sensors of nanofibrous membranes by electrospinning polyurethane (PU)/poly 2-acrylamido-2-methylpropanesulfonic acid (PAMPS)/graphene oxide (GO) with indicator dyes. The morphology of the electrospun nanofibers was examined using scanning electron microscopy (SEM). The effect of hydrophilic polymer ratio and concentration of GO on the sensing response time was investigated. The sensitivity of the membranes was studied over a wide pH range (1-8) in solution tests, with color change measured by calculating total color difference using UV-vis spectroscopy. The membranes were also subjected to vapor tests at three different pH values (1, 4, 8). SEM results show the successful fabrication of bimodal fiber diameter distributions of PU (mean fiber diameter 519 nm) and PAMPS (mean fiber diameter 78 nm). Sensing response time decreased dramatically with increasing concentrations of PAMPS and GO. The hybrid hydrophobic/hydrophilic/GO nanofibrous membranes are capable of instantly responding to changes in solution pH as well as detecting pH changes in chemical vapor solution in as little as 7 s.

SELECTION OF CITATIONS
SEARCH DETAIL
...