Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Labelled Comp Radiopharm ; 66(3): 116-125, 2023 03.
Article in English | MEDLINE | ID: mdl-36807307

ABSTRACT

[18 F]FTC-146 was introduced as a very potent and selective sigma-1 receptor radioligand, which has shown promising application as an imaging agent for neuropathic pain with positron emission tomography. In line with a multi-laboratory project on animal welfare, we chose this radioligand to investigate its potential for detecting neuropathic pain and tissue damage in tumor-bearing animals. However, the radiochemical yield (RCY) of around 4-7% was not satisfactory to us, and efforts were made to improve it. Herein, we describe an improved approach for the radiosynthesis of [18 F]FTC-146 resulting in a RCY, which is sevenfold higher than that previously reported. A tosylate precursor was synthesized and radio-fluorination experiments were performed via aliphatic nucleophilic substitution reactions using either K[18 F]F-Kryptofix®222 (K2.2.2 )-carbonate system or tetra-n-butylammonium [18 F]fluoride ([18 F]TBAF). Several parameters affecting the radiolabeling reaction such as solvent, 18 F-fluorination agent with the corresponding amount of base, labeling time, and temperature were investigated. Best labeling reaction conditions were found to be [18 F]TBAF and acetonitrile as solvent at 100°C. The new protocol was then translated to an automated procedure using a FX2 N synthesis module. Finally, the radiotracer reproducibly obtained with RCYs of 41.7 ± 4.4% in high radiochemical purity (>98%) and molar activities up to 171 GBq/µmol.


Subject(s)
Positron-Emission Tomography , Receptors, sigma , Animals , Positron-Emission Tomography/methods , Radiopharmaceuticals , Fluorine Radioisotopes , Solvents , Sigma-1 Receptor
2.
Braz. J. Pharm. Sci. (Online) ; 58: e18860, 2022. tab, graf
Article in English | LILACS | ID: biblio-1364415

ABSTRACT

Abstract There is no biodistribution or imaging data on 99mtechnetium (Tc)-hexamethyl propylamine oxime (HMPAO)-labeled platelets in the literature. The current study aimed to present updated information about the clinical procedures for preparation and use of labeled platelets. Following two-step centrifugation at 1500 and 2500 rpm, the platelets were extracted from whole blood into platelet-rich plasma (PRP) above the buffy coat and then from PRP into a platelet pellet at the bottom of the tube. The 99mTc-HMPAO-labeled platelets were inspected for purity, viability, release of 99mTc from platelets, and sterility. Also, microscopic examination and thin layer chromatography (TLC) were performed. Biodistribution was assessed following necropsy in BALB/c mice and through imaging of New Zealand rabbits. The separation ratio was estimated at 98%, and radiochemical purity was measured to be 80%. The labeling efficiency was above 30% in more than half of the assays (range: 17-43%). The release of 99mTc from platelets was 9% per hour at 37ºC. After 24 hours, stability was estimated at 54% in the human serum. The target organs of mice included the spleen and liver. In rabbits, the imaging results indicated liver as the target organ. Thyroid uptake was negligible up to 90 minutes. Based on the findings, extraction of platelets and labeling them with 99mTc-HMPAO is a feasible and safe approach in routine practice.


Subject(s)
Humans , Animals , Male , Mice , Quality Control , Blood Platelets/classification , Technetium Tc 99m Exametazime , Methods , Spleen , Chromatography, Thin Layer/methods , Efficiency/classification , Platelet-Rich Plasma , Liver
3.
Int J Mol Sci ; 22(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562048

ABSTRACT

The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0-60min after pre-treatment with α-CCA-Na in mice (-47%) and in piglets (-66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.


Subject(s)
Drug Evaluation, Preclinical/methods , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacology , Animals , Cell Line, Tumor , Female , Fluorine Radioisotopes/chemistry , Gallbladder/metabolism , Kidney/metabolism , Liver/metabolism , Mice , Monocarboxylic Acid Transporters/antagonists & inhibitors , Rats , Swine
4.
Molecules ; 25(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357571

ABSTRACT

Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13-15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time-activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET.


Subject(s)
Monocarboxylic Acid Transporters/antagonists & inhibitors , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiometry/methods , Radiopharmaceuticals/pharmacology , Symporters/antagonists & inhibitors , Tissue Distribution/drug effects , Animals , Bone Marrow/drug effects , Fluorine Radioisotopes , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Stomach/drug effects , Swine , Tomography, X-Ray Computed/methods , Urinary Bladder/drug effects
5.
Molecules ; 25(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423056

ABSTRACT

Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.


Subject(s)
Brain/diagnostic imaging , Monocarboxylic Acid Transporters/metabolism , Positron-Emission Tomography/methods , Pyridines/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Symporters/metabolism , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/cytology , Brain/metabolism , Cell Line , Coumaric Acids/pharmacology , Drug Evaluation, Preclinical , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Fluorine Radioisotopes , Ligands , Mice , Monocarboxylic Acid Transporters/antagonists & inhibitors , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Pyridines/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Rats , Symporters/antagonists & inhibitors
6.
Sci Rep ; 9(1): 18890, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827199

ABSTRACT

Monocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumour development and progression. Their level of expression is particularly upregulated in glycolytic cancer cells and accordingly MCTs are considered as promising drug targets for treatment of a variety of human cancers. The non-invasive imaging of these transporters in cancer patients via positron emission tomography (PET) is regarded to be valuable for the monitoring of therapeutic effects of MCT inhibitors. Recently, we developed the first 18F-radiolabelled MCT1/MCT4 inhibitor [18F]FACH and reported on a two-step one-pot radiosynthesis procedure. We herein describe now a unique one-step radiosynthesis of this radiotracer which is based on the approach of using a methylsulfonate (mesylate) precursor bearing an unprotected carboxylic acid function. With the new procedure unexpected high radiochemical yields of 43 ± 8% at the end of the radiosynthesis could be obtained in a strongly reduced total synthesis time. Moreover, the radiosynthesis was successfully transferred to a TRACERlab FX2 N synthesis module ready for future preclinical applications of [18F]FACH.

7.
J Labelled Comp Radiopharm ; 62(8): 411-424, 2019 06 30.
Article in English | MEDLINE | ID: mdl-31017677

ABSTRACT

Monocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumor development and progression. Their expression levels are related to clinical disease prognosis. Accordingly, both MCTs are promising drug targets for treatment of a variety of human cancers. The noninvasive imaging of these MCTs in cancers is regarded to be advantageous for assessing MCT-mediated effects on chemotherapy and radiosensitization using specific MCT inhibitors. Herein, we describe a method for the radiosynthesis of [18 F]FACH ((E)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylic acid), as a novel radiolabeled MCT1/4 inhibitor for imaging with PET. A fluorinated analog of α-cyano-4-hydroxycinnamic acid (FACH) was synthesized, and the inhibition of MCT1 and MCT4 was measured via an L-[14 C]lactate uptake assay. Radiolabeling was performed by a two-step protocol comprising the radiosynthesis of the intermediate (E)/(Z)-[18 F]tert-Bu-FACH (tert-butyl (E)/(Z)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylate) followed by deprotection of the tert-butyl group. The radiofluorination was successfully implemented using either K[18 F]F-K2.2.2 -carbonate or [18 F]TBAF. The final deprotected product [18 F]FACH was only obtained when [18 F]tert-Bu-FACH was formed by the latter procedure. After optimization of the deprotection reaction, [18 F]FACH was obtained in high radiochemical yields (39.6 ± 8.3%, end of bombardment (EOB) and radiochemical purity (greater than 98%).


Subject(s)
Acrylates/chemical synthesis , Acrylates/pharmacology , Fluorine Radioisotopes/chemistry , Monocarboxylic Acid Transporters/antagonists & inhibitors , Muscle Proteins/antagonists & inhibitors , Symporters/antagonists & inhibitors , Acrylates/chemistry , Animals , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Isotope Labeling , Mice , Radiochemistry
8.
Mol Divers ; 21(4): 821-830, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28836075

ABSTRACT

In current study, antitumor activity of two series of the newly synthesized spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds was evaluated against three human breast normal and cancer cell lines (MCF-10A, MCF-7 and SK-BR-3) and compared with cytotoxicity values of doxorubicin and colchicine as the standard drugs. It was found that several compounds were endowed with cytotoxicity in the low micromolar range. Among these two series, compounds 6i, 6j, 6k and 7l, 7m, 7n, 7o containing 3-ethyl-1H-indole moiety were found to be highly effective against both cancer cell lines ranging from [Formula: see text] to [Formula: see text] in comparison with the corresponding analogs. Compared with human cancer cells, the most potent compounds did not show high cytotoxicity against human breast normal MCF-10A cells. Generally, most of the evaluated compounds 6a-l and 7a-o series showed more antitumor activity against SK-BR-3 than MCF-7 cells. Moreover, comparative molecular field analysis (CoMFA) as a popular tools of three-dimensional quantitative structure-activity relationship (3D-QSAR) studies was carried out on 27 spiropyrroloquinolineisoindolinone and spiropyrroloquinolineaza-isoindolinone derivatives with antitumor activity against on SK-BR-3 cells. The obtained CoMFA models showed statistically excellent performance, which also possessed good predictive ability for an external test set. The results confirm the important effect of molecular steric and electrostatic interactions of these compounds on in vitro cytotoxicity against SK-BR-3.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Models, Molecular , Quantitative Structure-Activity Relationship , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Conformation
9.
Ann Nucl Med ; 31(4): 335-346, 2017 May.
Article in English | MEDLINE | ID: mdl-28315150

ABSTRACT

OBJECTIVE: 4-Benzyl-1-(3-iodobenzylsulfonyl)piperidine, 4-B-IBSP, has shown high-binding affinity to both sigma (σ) receptors in our previous work. In current study, radiolabeling and preclinical evaluation of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl)piperidine, 4-B-[125I]IBSP, in human ductal breast carcinoma (T47D) cells and in breast adenocarcinoma-bearing BALB/c mice are described. METHODS: Radioiodination of this new σ ligand was performed by a palladium-catalyzed stannylation approach followed by oxidative iododestannylation reaction using Iodo-Gen. Competition-binding assays for binding of 4-B-[125I]IBSP to guinea pig brain membranes and to T47D cells were performed with known σ ligands. The selectivity and binding characteristics (B max and K d) were analyzed. In vitro stability and in vivo blood metabolism studies were also evaluated. Moreover, biodistribution studies were performed in normal and into the tumor-bearing mice at interval time points post-injection (p.i.). Both in vitro and in vivo blockade experiments were done in the presence of the σ receptors blocking agents. RESULTS: Radioiodinated ligand was obtained in high yield and high specific activity. The σ inhibition constants (K i, nM) for 4-(3-iodobenzyl)-1-(benzylsulfonyl)piperazine (4-IBBSPz), (+)-pentazocine, haloperidol, DTG, and 4-B-IBSP were 1.37 ± 0.19, 3.90 ± 0.77, 2.69 ± 0.33, 30.62 ± 2.01, and 0.61 ± 0.05, respectively. 4-B-[125I]IBSP bound to σ receptor sites preferably to very high-affinity binding sites on T47D cells. The radioligand showed acceptable in vitro and in vivo stabilities in the blood pool. However, in vivo biodistribution studies in normal Swiss albino mice revealed fast clearance of 4-B-[125I]IBSP from blood and the other normal organs. Biodistribution experiments of 4-B-[125I]IBSP in breast adenocarcinoma tumor-bearing BALB/c mice showed a relatively high tumor uptake at 30 min p.i. (4.13 ± 0.95) that reaches to 1.57 ± 0.24 even after 240 min p.i. A pre-injection of 4-B-IBSP and haloperidol with 4-B-[125I]IBSP resulted in 36-57% decrease in activity in the tumor, liver, and brain at 60 min p.i. CONCLUSIONS: The high affinity of 4-B-[125I]IBSP to σ receptor-binding sites, its relatively high uptake, and preferential retention in the tumor as well as an increasing trend observed in the tumor to blood and in the tumor to muscle ratios suggests that an iodine-123 labeled counterpart, 4-B-[123I]IBSP, would be a promising σ radioligand for pursuing further studies to assess its potential for breast tumors imaging with SPECT.


Subject(s)
Carcinoma, Ductal, Breast/diagnostic imaging , Piperidines , Radiopharmaceuticals , Sulfonamides , Animals , Binding, Competitive , Brain/diagnostic imaging , Brain/metabolism , Carcinoma, Ductal, Breast/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Stability , Female , Guinea Pigs , Humans , Male , Mice, Inbred BALB C , Neoplasm Transplantation , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Quality Control , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Receptors, sigma/metabolism , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
10.
Bioorg Med Chem Lett ; 26(11): 2676-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27090556

ABSTRACT

New spirocyclic-2,6-diketopiperazine derivatives containing benzylpiperidine and cycloalkane moieties were synthesized by a one-pot two-step sequential Ugi/intramolecular N-amidation process in moderate to good yields. The in vitro ligand-binding profile studies performed on the sigma-1 and sigma-2 receptors revealed that the σ1 affinities and subtype selectivities of three spirocyclic piperidine derivatives are generally comparable to those of spirocycloalkane analogues. Compared to the low σ1 affinities obtained for cycloalkyl-substituted spirocyclic-2,6-diketopiperazines with n=2, those with n=1 proved to have optimal fitting with σ2 subtype by exhibiting higher affinities. Moreover, the best binding affinity and subtype selectivity was identified for compound 3c with Kiσ1=5.9±0.5nM and Kiσ2=563±21nM as well as 95-fold σ1/σ2 selectivity ratio, respectively.


Subject(s)
Diketopiperazines/pharmacology , Receptors, sigma/antagonists & inhibitors , Animals , Binding Sites/drug effects , Diketopiperazines/chemical synthesis , Diketopiperazines/chemistry , Dose-Response Relationship, Drug , Guinea Pigs , Humans , Molecular Structure , Rats , Receptors, sigma/chemistry , Structure-Activity Relationship , Sigma-1 Receptor
11.
Nucl Med Commun ; 36(1): 90-4, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25230055

ABSTRACT

OBJECTIVES: The aim of this study was to estimate the effective absorbed radiation dose to human organs following promising in-vivo results of intravenous administration of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl)piperidine (4-B-[125I]-IBSP) using normal biodistribution data obtained from rats. MATERIALS AND METHODS: Five rats were killed at exact time intervals and the percentage of injected dose per gram of each organ was measured by direct counting from rat data. The medical internal radiation dose formulation was applied to extrapolate from rats to humans and to project the absorbed radiation dose for various human organs. RESULTS: The dose estimation shows that the organs that received the highest absorbed dose were the brain, bone surface, and red marrow (10.51, 0.69, and 0.08 µGy/MBq, respectively). Our prediction shows that a 185 MBq injection of 4-B-[125I]-IBSP into humans might result in an estimated absorbed dose of 49.39 µGy for the whole body. The highest effective absorbed dose for 4-B-[125I]-IBSP was in the brain (19.4 µSv) and the organs that received the next highest doses were the bone surface, red marrow, muscle, and thyroid, with magnitudes of 15.27, 1.81, 0.15, and 0.10 µSv, respectively. CONCLUSION: The results of this study suggest that 4-B-[125I]-IBSP is a suitable and safe candidate in clinical studies and in lung malignancies.


Subject(s)
Piperidines/pharmacokinetics , Radiation Dosage , Sulfonamides/pharmacokinetics , Animals , Female , Humans , Rats , Tissue Distribution
12.
Iran J Pharm Res ; 12(3): 273-80, 2013.
Article in English | MEDLINE | ID: mdl-24250633

ABSTRACT

Two deoxyglucose (DG) derivatives, (α,ß)-2-deoxy-2-amino(ethylcarbamate)-D-glucose (ECB-DG) and (α,ß)-2-deoxy-2-amino(1,2-dihydroxypropyl)-D-glucose (DHP-DG), were synthesized and radiolabeled successfully with [(99m)Tc(H2O)3(CO)3](+) complex. [(99m)Tc]-ECB-DG and [(99m)Tc]-DHP-DG complexes were prepared (96% and 93% radiochemical purities respectively) by using 46 mCi of Na(99m)TcO4 in 1 mL saline. Radio-HPLC analysis of [(99m)Tc]- ECB-DG at pH = 7.4, revealed that labeling with (99m)Tc leads to formation of one radiochemical species with tR = 381 second. Three radiochemical species, Na(99m)TcO4, [(99m)Tc]-DHP-DG and [(99m)Tc(H2O)3(CO)3](+) complexes with tR = 342 sec, tR = 567 sec and tR = 1586 sec respectively, were obtained when [(99m)Tc]-DHP-DG complex evaluated by HPLC. Biodistribution of two complexes were studied on normal mice at 10, 30 and 60 min post-injections. Compared to the (18)F-FDG, [(99m)Tc]-ECB-DG displayed a 2.8-fold reduction in brain uptake (1.7 ± 0.2 versus 0.61% ± 0.09) ,whereas [(99m)Tc]-DHP-DG just showed 1.9-fold reduction in heart uptake (2.2 ± 0.05 towards 1.16±0.10) at 1 h post-injection. On the basis of our results, it seems that ECB-DG and DHP-DG analogues could be used as brain and heart imaging agent respectively.

13.
Eur J Med Chem ; 64: 488-97, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23680866

ABSTRACT

This study presents the synthesis and biological evaluation of a new series of arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as sigma receptor ligands. It was found that a number of halogen substituted sulfonamides display relatively high and low affinities to σ1 and σ2 receptors, respectively. The σ1 affinities and subtype selectivities of four piperidine derivatives were also found to be generally comparable to those of piperazine analogues. Compared to σ1-Rs compounds with n = 0 and 2, those with n = 1 proved to have optimal length of carbon chain by exhibiting higher affinities. Within this series, the 4-benzyl-1-(3-iodobenzylsulfonyl)piperidine sigma ligand was identified with 96-fold σ1/σ2 selectivity ratio (Kiσ1 = 0.96 ± 0.05 nM and Kiσ2 = 91.8 ± 8.1 nM).


Subject(s)
Piperazines/pharmacology , Piperidines/pharmacology , Receptors, Dopamine D1/antagonists & inhibitors , Animals , Binding Sites/drug effects , Dopamine D2 Receptor Antagonists , Dose-Response Relationship, Drug , Guinea Pigs , Ligands , Male , Molecular Conformation , Piperazine , Piperazines/chemical synthesis , Piperazines/chemistry , Piperidines/chemical synthesis , Piperidines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
14.
J Org Chem ; 76(24): 9975-82, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22053779

ABSTRACT

We have developed a solvent-dependent method for the synthesis of novel benzo-δ-sultone scaffolds. A variety of benzylbenzo[e][1,2]oxathiin-4(3H)-one-2,2-dioxides were obtained in high yields in DMF using a one-pot, DBU-catalyzed condensation of 2-hydroxybenzaldehydes with a number of (E)-2-phenylethenesulfonyl chlorides. On the other hand, the initially prepared 2-formylphenyl-(E)-2-phenylethenesulfonate derivatives underwent DBU-catalyzed reactions to a series of 3-[methoxy(phenyl)methyl]benzo[e][1,2]oxathiine-2,2-dioxides in moderate to good yields in MeOH. These reactions presumably proceed via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...