Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 658: 739-747, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38142624

ABSTRACT

Developing affluent dual-metal active sites bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to achieve large-scale water electrolysis, whereas still remains challenging. Herein, a novel nitrogen-doped cobalt-vanadium oxide with abundant Co-N and V-N dual active sites supported on nickel foam (N-Co3V2O8@NF) is constructed by a controllable impregnation-thermal nitridation strategy. The staggered nanosheet structure ensures optimal exposure of active sites. More importantly, N doping effectively regulates the electronic structure of the metal centers and induces the formation of Co-N and V-N dual active sites, which is conducive to improving the conductivity and hydrophilicity, thus synergistically enhancing the electrocatalytic efficiency. Consequently, the optimized N-Co3V2O8@NF exhibits prominent HER (63 mV@10 mA cm-2) and OER (256 mV@10 mA cm-2) activities, surpassing most contemporary bifunctional electrocatalysts. In practical application, the assembled N-Co3V2O8@NF(+/-) electrolyzer consistently achieved ultra-low cell voltages of 1.97 and 2.03 V at 500 and 1000 mA cm-2, respectively, superior to the benchmark RuO2@NF(+) || Pt/C@NF(-) and showcasing robust durability. This paves the way for its prospective adoption in industrial water electrolysis applications.

SELECTION OF CITATIONS
SEARCH DETAIL