Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334619

ABSTRACT

Endogenous double-stranded RNA has emerged as a potent stimulator of innate immunity. Under physiological conditions, endogenous dsRNA is maintained in the cell nucleus or the mitochondria; however, if protective mechanisms are breached, it leaches into the cytoplasm and triggers immune signaling pathways. Ectopic activation of innate immune pathways is associated with various diseases and senescence and can trigger apoptosis. Hereby, the level of cytoplasmic dsRNA is crucial. We have enriched dsRNA from two melanoma cell lines and primary dermal fibroblasts, including a competing probe, and analyzed the dsRNA transcriptome using RNA sequencing. There was a striking difference in read counts between the cell lines and the primary cells, and the effect was confirmed by northern blotting and immunocytochemistry. Both mitochondria (10-20%) and nuclear transcription (80-90%) contributed significantly to the dsRNA transcriptome. The mitochondrial contribution was lower in the cancer cells compared to fibroblasts. The expression of different transposable element families was comparable, suggesting a general up-regulation of transposable element expression rather than stimulation of a specific sub-family. Sequencing of the input control revealed minor differences in dsRNA processing pathways with an upregulation of oligoadenylate synthase and RNP125 that negatively regulates the dsRNA sensors RIG1 and MDA5. Moreover, RT-qPCR, Western blotting, and immunocytochemistry confirmed the relatively minor adaptations to the hugely different dsRNA levels. As a consequence, these transformed cell lines are potentially less tolerant to interventions that increase the formation of endogenous dsRNA.


Subject(s)
DNA Transposable Elements , RNA, Double-Stranded , Cells, Cultured , Immunity, Innate/genetics , Cell Line
2.
Genome Res ; 31(7): 1174-1186, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34158368

ABSTRACT

The testis transcriptome is highly complex and includes RNAs that potentially hybridize to form double-stranded RNA (dsRNA). We isolated dsRNA using the monoclonal J2 antibody and deep-sequenced the enriched samples from testes of juvenile Dicer1 knockout mice, age-matched controls, and adult animals. Comparison of our data set with recently published data from mouse liver revealed that the dsRNA transcriptome in testis is markedly different from liver: In testis, dsRNA-forming transcripts derive from mRNAs including promoters and immediate downstream regions, whereas in somatic cells they originate more often from introns and intergenic transcription. The genes that generate dsRNA are significantly expressed in isolated male germ cells with particular enrichment in pachytene spermatocytes. dsRNA formation is lower on the sex (X and Y) chromosomes. The dsRNA transcriptome is significantly less complex in juvenile mice as compared to adult controls and, possibly as a consequence, the knockout of Dicer1 has only a minor effect on the total number of transcript peaks associated with dsRNA. The comparison between dsRNA-associated genes in testis and liver with a reported set of genes that produce endogenous siRNAs reveals a significant overlap in testis but not in liver. Testis dsRNAs also significantly associate with natural antisense genes-again, this feature is not observed in liver. These findings point to a testis-specific mechanism involving natural antisense transcripts and the formation of dsRNAs that feed into the RNA interference pathway, possibly to mitigate the mutagenic impacts of recombination and transposon mobilization.

3.
Noncoding RNA ; 7(1)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669629

ABSTRACT

The birth of long non-coding RNAs (lncRNAs) is closely associated with the presence and activation of repetitive elements in the genome. The transcription of endogenous retroviruses as well as long and short interspersed elements is not only essential for evolving lncRNAs but is also a significant source of double-stranded RNA (dsRNA). From an lncRNA-centric point of view, the latter is a minor source of bother in the context of the entire cell; however, dsRNA is an essential threat. A viral infection is associated with cytoplasmic dsRNA, and endogenous RNA hybrids only differ from viral dsRNA by the 5' cap structure. Hence, a multi-layered defense network is in place to protect cells from viral infections but tolerates endogenous dsRNA structures. A first line of defense is established with compartmentalization; whereas endogenous dsRNA is found predominantly confined to the nucleus and the mitochondria, exogenous dsRNA reaches the cytoplasm. Here, various sensor proteins recognize features of dsRNA including the 5' phosphate group of viral RNAs or hybrids with a particular length but not specific nucleotide sequences. The sensors trigger cellular stress pathways and innate immunity via interferon signaling but also induce apoptosis via caspase activation. Because of its central role in viral recognition and immune activation, dsRNA sensing is implicated in autoimmune diseases and used to treat cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...