Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202301755, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478710

ABSTRACT

The urgent need to address the global energy and environmental crisis necessitates the development of efficient solar-power harvesting systems. Among the promising candidates, hierarchical inorganic nanostructures stand out due to their exceptional attributes, including a high specific surface area, abundant active sites, and tunable optoelectronic properties. In this comprehensive review, we delve into the fundamental principles underlying various solar energy harvesting technologies, including dye-sensitized solar cells (DSSCs), photocatalytic, photoelectrocatalytic (water splitting), and photothermal (water purification) systems, providing a foundational understanding of their operation. Thereafter, the discussion is focused on recent advancements in the synthesis, design, and development of hierarchical nanostructures composed of diverse inorganic material combinations, tailored for each of these solar energy harvesting systems. We meticulously elaborate on the distinct synthesis methods and conditions employed to fine-tune the morphological features of these hierarchical nanostructures. Furthermore, this review offers profound insights into critical aspects such as electron transfer mechanisms, band gap engineering, the creation of hetero-hybrid structures to optimize interface chemistry through diverse synthesis approaches, and precise adjustments of structural features. Beyond elucidating the scientific fundamentals, this review explores the large-scale applications of the aforementioned solar harvesting systems. Additionally, it addresses the existing challenges and outlines the prospects for achieving heightened solar-energy conversion efficiency.

2.
ACS Omega ; 9(1): 1990-1999, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222588

ABSTRACT

Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests. The morphological and physiochemical characterizations were performed to study the impact of high-temperature filtration on the membranes' chemical composition and morphological characteristics. An increase in the temperature deteriorated the membrane performance in terms of water flux and salt rejection. Flux decline at high temperatures was recognized as the primary concern for high-temperature filtrations, restricting the applications of commercial membranes for long-term operations. This research provides valuable insights for researchers aiming to thoroughly characterize reverse osmosis membranes at high temperatures.

3.
ACS Appl Mater Interfaces ; 15(35): 41961-41976, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37624730

ABSTRACT

Biobased membranes made with green solvents have numerous advantages in the water purification industry; however, their long-term use is impeded by severe membrane fouling and low structural stability. Herein, we proposed a facile and green approach to fabricate an eco-friendly and biodegradable electrospun membrane by simply blending polycaprolactone (PCL) with sulfonated kraft lignin (SKL) in a green solvent (i.e., acetic acid) without needing any additional post-treatment. We investigated the influence of SKL content on the surface morphology, chemical composition, and mechanical properties of the electrospun membrane. The SKL-modified membranes (L-5 and L-10) showed superhydrophilicity and underwater superoleophobicity with a water contact angle (WCA) of 0° (<3 s) and an underwater-oil contact angle (UWOCA) over 150° due to the combined effect of surface roughness and hydrophilic chemical functionality. Furthermore, the as-prepared membranes demonstrated excellent pure water flux of 800-900 LMH and an emulsion flux of 170-480 LMH during the gravity-driven filtration of three surfactant-stabilized oil-in-water emulsions, namely, mineral oil/water, gasoline/water, and n-hexadecane/water emulsions. In addition, these membranes exhibited superior antioil-fouling performance with excellent separation efficiency (97-99%) and a high flux recovery ratio (>98%). The 10 wt % SKL-incorporated membrane (L-10) also showed consistent separation performance after 10 cyclic tests, indicating its excellent reusability and recyclability. Furthermore, the stability of the membrane under harsh pH conditions was also evaluated and proved to be robust enough to maintain its wettability in a wide pH range (pH 1-10).

4.
Chem Rev ; 123(16): 10156-10205, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37523591

ABSTRACT

Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.

5.
Adv Mater ; 35(31): e2300422, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37095074

ABSTRACT

MXenes, 2D transition metal carbides, nitrides, and carbonitrides, have been investigated for diverse applications since their discovery; however, their life-cycle assessment (LCA) has not been studied. Here, a "cradle to gate" LCA is performed to assess the cumulative energy demand (CED) and environmental impacts of lab-scale synthesis of Ti3 C2 Tx , the most researched MXene composition. Electromagnetic interface (EMI) shielding is selected as it is one of MXenes' most promising applications and LCA of Ti3 C2 Tx synthesis is compared to aluminum and copper foils, two typical EMI-shielding materials. Two laboratory-scale MXene synthesis systems-gram and kilogram batches-are examined. The CED and environmental implications of Ti3 C2 Tx synthesis are investigated based on its precursor production, selective etching, delamination processes, laboratory location, energy mix, and raw material type. These results show that laboratory electricity usage for the synthesis processes accounts for >70% of the environmental impacts. Manufacturing 1.0 kg of industrial-scale aluminum and copper foil releases 23.0 kg and 8.75 kg of CO2 , respectively, while 1.0 kg of lab-scale MXene synthesis releases 428.10 kg. Chemical usage is less impactful than electricity, which suggests that recycled resources and renewable energy can make MXene synthesis more sustainable. Understanding MXene LCA helps the industrialization of this material.

6.
Ultrason Sonochem ; 90: 106202, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36274415

ABSTRACT

Metal-organic framework (MOF) membranes hold the promise for energy-efficient separation processes. These nanocrystalline compounds can effectively separate materials with different sizes and shapes at a molecular level. Furthermore, MOFs are excellent candidates for improving membrane permeability and/or selectivity due to their unique properties, such as high specific area and special wettability. Generally, MOFs can be used as fillers in mixed matrix membranes (MMMs) or incorporated onto the membrane surface to modify the top layer. Characteristics of the MOFs, and correspondingly, the properties of the MOF-based membranes, are majorly affected by their production technique. This critical review discusses the sonication technique for MOF production and the opportunities and challenges of using MOF for making membranes. Effective parameters on the characteristics of the synthesized MOFs, such as sonication time and power, were discussed in detail. Although the ultrasonically synthesized MOFs have shown great potential in the fabrication/modification of membranes for gas and liquid separation/purification, so far, no comprehensive and critical review has been published to clarify such accomplishments and technological gaps for the future research direction. This paper aims to review the most recent research conducted on ultrasonically synthesized MOF for the modification of polymeric membranes. Recommendations are provided with the intent of identifying the potential future works to explore the influential sonication parameters.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Adsorption , Wettability
7.
Adv Colloid Interface Sci ; 299: 102524, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34620491

ABSTRACT

Thin-film composite (TFC) membranes are the most widely used membranes for low-cost and energy-efficient water desalination processes. Proper control over the three influential surface parameters, namely wettability, roughness, and surface charge, is vital in optimizing the TFC membrane surface and permeation properties. More specifically, the surface properties of TFC membranes are often tailored by incorporating novel special wettability materials to increase hydrophilicity and tune surface physicochemical heterogeneity. These essential parameters affect the membrane permeability and antifouling properties. The membrane surface characterization protocols employed to date are rather controversial, and there is no general agreement about the metrics used to evaluate the surface hydrophilicity and physicochemical heterogeneity. In this review, we surveyed and critically evaluated the process that emerged for understanding the membrane surface properties using the simple and economical contact angle analysis technique. Contact angle analysis allows the estimation of surface wettability, surface free energy, surface charge, oleophobicity, contact angle hysteresis, and free energy of interaction; all coordinatively influence the membrane permeation and fouling properties. This review will provide insights into simplifying the evaluation of membrane properties by contact angle analysis that will ultimately expedite the membrane development process by reducing the time and expenses required for the characterization to confirm the success and the impact of any modification.

8.
ACS Omega ; 6(16): 10816-10827, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-34056236

ABSTRACT

Chitosan/poly(vinyl alcohol)/amino-functionalized montmorillonite nanocomposite electrospun membranes with enhanced adsorption capacity and thermomechanical properties were fabricated and utilized for the removal of a model cationic dye (Basic Blue 41). Effects of nanofiller concentrations (up to 3.0 wt %) on the morphology and size of the nanofibers as well as the porosity and thermomechanical properties of the nanocomposite membranes are studied. It is shown that the incorporation of the nanoclay particles with ∼10 nm lateral sizes into the polymer increases the size of the pores by about 80%. To demonstrate the efficiency of the adsorbents, the dye removal rate is investigated as a function of pH, adsorbent dosage, dye concentration, and nanofiller loading. The highest and fastest dye removal occurs for the nanofibrous membranes containing 2 wt % nanofiller, where about 80% of the cationic dye is removed after 15 min. This performance is at least 20% better than the pristine chitosan/poly(vinyl alcohol) membrane. The thermal stability and compression resistance of the nanocomposite membranes are found to be higher than those of the pristine membrane. In addition, reusability studies show that the dye removal performance of this nanocomposite membrane reduces by only about 5% over four cycles. The adsorption kinetics is explained by the Langmuir isotherm model and is expressed by a pseudo-second-order kinetic mechanism that determines a spontaneous chemisorption process. The results of this study provide a valuable perspective on the fabrication of high-performance, reusable, and efficient electrospun fibrous nanocomposite adsorbents.

9.
Sci Rep ; 11(1): 8098, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854144

ABSTRACT

The sustainable expansion of steam-assisted gravity drainage, as one of the most popular enhanced oil recovery methods, strongly depends on the proper management of the produced water. The strict environmental regulations have forced the oil sands industry to treat and reuse the produced water for oil extraction. Membrane separation as a single-step water treatment technique has played an important role in removing multiple-sized contaminants from wastewater. However, fouling limits the widespread application of this technology if the membrane is not modified properly to achieve antifouling propensities. Herein, we used the layer-by-layer assembly technique to sequentially coat the hydrophilic poly(diallyl dimethylammonium chloride) and polyacrylic acid on the surface of the polyamide-imide porous membrane to improve its fouling resistance. The effect of the number of bilayers on fouling and permeation properties was examined. The membrane with the highest fouling resistance and reasonable hydrodynamic permeability of 5.2 LMH/psi was achieved by coating four bilayers. This membrane exhibited a low flux decline of 50.2% and a high flux recovery ratio of 100%, while these numbers for the pristine PAI membrane were 75.9% and 97.8% under similar test conditions. The enhanced antifouling characteristics of the modified membranes indicate the viability of these membranes for oil sands produced water treatment with an easy cleaning procedure. The key parameter that contributed to the enhanced fouling resistance of the bilayer-coated membranes was the improved surface hydrophilicity, which manifests through the reduction of water contact angle from 62° ± 3° for the pristine membrane to 52° ± 2° for surface-modified membranes.

10.
ACS Appl Mater Interfaces ; 12(47): 53274-53285, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170622

ABSTRACT

Despite growing demands for high-temperature wastewater treatment, most available polymeric membranes are limited to mild operating temperatures (<50 °C) and become less efficient at high temperatures. Herein we show how to make thermally stable reverse osmosis thin-film nanocomposite (TFN) membranes by embedding nanodiamond (ND) particles. Polyamide composite layers containing different loadings of surface-modified ND particles were synthesized through interfacial polymerization. The reactive functional groups and the hydrophilic surface of the NDs intensified the interactions of the nanoparticles with the polymer matrix and increased the surface wettability of the TFN membranes. Contact angle measurement showed a maximum decrease from 88.4° for the pristine membrane to 58.3° for the TFN membrane fabricated with 400 ppm ND particles. The addition of ND particles and ethyl acetate created larger surface features on the polyamide surface of TFN membranes. The average roughness of the membranes increased from 108.4 nm for the pristine membrane to 177.5 nm for the TFN membrane prepared with highest ND concentration. The ND-modified TFN membranes showed a higher pure water flux (up to 76.5 LMH) than the pristine membrane (17 LMH) at ambient temperature at 220 psi and room temperature. The TFN membrane with the highest loading of ND particles overcame the trade-off relation between the water flux and NaCl rejection with 76.5 LMH and 97.3% when 2000 ppm of NaCl solution was filtered at 220 psi. Furthermore, with increasing ND concentration, the TFN membrane showed a lower flux decline at high temperatures over time. The TFN400 prepared with 400 ppm of m-phenylene diamine functionalized ND particles had a 13% flux decline over a 9 h filtration test at 75 °C. This research provides a promising path to the development of high-performance TFN membranes with enhanced thermal stability for the treatment of wastewaters at high temperatures.

11.
Sci Rep ; 10(1): 18317, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33110227

ABSTRACT

Investigating the flow behavior in microfluidic systems has become of interest due to the need for precise control of the mass and momentum transport in microfluidic devices. In multilayered-flows, precise control of the flow behavior requires a more thorough understanding as it depends on multiple parameters. The following paper proposes a microfluidic system consisting of an aqueous solution between a moving plate and a stationary wall, where the moving plate mimics a charged oil-water interface. Analytical expressions are derived by solving the nonlinear Poisson-Boltzmann equation along with the simplified Navier-Stokes equation to describe the electrokinetic effects on the shear-driven flow of the aqueous electrolyte solution. The Debye-Huckel approximation is not employed in the derivation extending its compatibility to high interfacial zeta potential. Additionally, a numerical model is developed to predict the streaming potential flow created due to the shear-driven motion of the charged upper wall along with its associated electric double layer effect. The model utilizes the extended Nernst-Planck equations instead of the linearized Poisson-Boltzmann equation to accurately predict the axial variation in ion concentration along the microchannel. Results show that the interfacial zeta potential of the moving interface greatly impacts the velocity profile of the flow and can reverse its overall direction. The numerical results are validated by the analytical expressions, where both models predicted that flow could reverse its overall direction when the interfacial zeta potential of the oil-water is above a certain threshold value. Finally, this paper describes the electroviscous effect as well as the transient development of electrokinetic effects within the microchannel.

12.
ACS Appl Mater Interfaces ; 12(34): 38285-38298, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32846472

ABSTRACT

In this work, nanorods with high antibacterial properties were synthesized with silver acetate as the metal source and 2-aminoterephthalic acid as the organic linker and were then embedded into thin-film composite (TFC) membranes to amend their performance as well as to alleviate biofouling. Silver metal-organic framework (Ag-MOF) nanorods with a length smaller than 40 nm were incorporated within the polyamide thin selective layer of the membranes during interfacial polymerization. The interaction of the synthesized nanorods with the polyamide was favored because of the presence of amine-containing functional groups on the nanorod's surface. The results of X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy characterizations proved the presence of Ag-MOF nanorods in the selective layer of thin-film nanocomposite (TFN) membranes. TFN membranes demonstrated improved water permeance, salt selectivity, and superior antibacterial properties. Specifically, the increased hydrophilicity and antibacterial potential of the TFN membranes led to a synergetic effect toward biofouling mitigation. The number of live bacteria attached to the surface of the neat TFC membrane decreased by more than 92% when a low amount of Ag-MOF nanorods (0.2 wt %) was applied. Following contact of the TFN membrane surface with Escherichia coli and Staphylococcus aureus, full inactivation, and degradation of bacteria cells were observed with microscopy, colony-forming unit tests, and disc inhibition zone analyses. This result translated to a negligible amount of the biofilm formed on the active layer. Indeed, the incorporation of Ag-MOF nanorods decreased the metal-ion release rate and therefore provided prolonged antibacterial performance.


Subject(s)
Biofouling/prevention & control , Membranes, Artificial , Metal-Organic Frameworks/chemistry , Nanotubes/chemistry , Silver/chemistry , Escherichia coli/drug effects , Hydrophobic and Hydrophilic Interactions , Nanotubes/toxicity , Nylons/chemistry , Staphylococcus aureus/drug effects , Surface Properties
13.
ACS Appl Mater Interfaces ; 12(32): 36287-36300, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32677425

ABSTRACT

In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.


Subject(s)
Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Nylons/chemistry , Silver/chemistry , Biofouling/prevention & control , Escherichia coli/drug effects , Ethylenediamines/chemistry , Filtration , Imidazoles/chemistry , Membranes, Artificial , Osmosis , Permeability , Polymers/chemistry , Propionates/chemistry , Sulfones/chemistry , Surface Properties , Water Purification/methods
14.
Langmuir ; 36(28): 8301-8310, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32584578

ABSTRACT

The wetting of a solid surface by a liquid droplet under a liquid medium at elevated temperatures depends not only on the solid-drop and drop-medium interfacial tensions (IFTs) but also on the temperature dependency of the IFT of the surrounding medium. Previous studies have shown either a decreasing or nearly invariant trend of wettability with an increase in temperature. However, much of the research up to now has only focused on the evaluation of solid wettability in air or vapor, and no model has been proposed to predict the variation of solid wettability at high temperatures under a liquid medium. Here, we developed a theoretical framework and a novel experimental approach to evaluate the high-temperature solid-liquid-liquid wettability. We investigated the wettability of different polymeric and nonpolymeric surfaces, namely, glass, silicon wafer, poly(methyl methacrylate) (PMMA), and polytetrafluoroethylene (PTFE), for a wide range of polar and nonpolar probe droplets under water (as a liquid medium) at temperatures up to 90 °C. The experimental results revealed that the nonpolymeric highly polar solid surfaces, that is, glass and silicon wafer, showed a sharp increase in their contact angle with the probe droplets at elevated temperatures. Between the two polymeric surfaces, PMMA showed a decreasing trend of the contact angle over the variation of temperatures, while in the case of PTFE, no specific trend was observed. The predictions of our theoretical model were in good agreement with the experimental observations with less than ±25% deviation.

15.
Micromachines (Basel) ; 11(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963872

ABSTRACT

Hydrogel-facilitated phase separation (HFPS) has recently been applied to make microstructured porous membranes by modified phase separation processes. In HFPS, a soft lithographically patterned hydrogel mold is used as a water content source that initiates the phase separation process in membrane fabrication. However, after each membrane casting, the hydrogel content changes due to the diffusion of organic solvent into the hydrogel from the original membrane solution. The absorption of solvent into the hydrogel mold limits the continuous use of the mold in repeated membrane casts. In this study, we investigated a simple treatment process for hydrogel mold recovery, consisting of warm and cold treatment steps to provide solvent extraction without changing the hydrogel mold integrity. The best recovery result was 96%, which was obtained by placing the hydrogel in a warm water bath (50 °C) for 10 min followed by immersing in a cold bath (23 °C) for 4 min and finally 4 min drying in air. This recovery was attributed to nearly complete solvent extraction without any deformation of the hydrogel structure. The reusability of hydrogel can assist in the development of a continuous membrane fabrication process using HFPS.

16.
Chemosphere ; 238: 124691, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31524626

ABSTRACT

In recent years, forward osmosis (FO) has represented numerous potential applications in safe water production. In this study, we improved the performance of FO thin film composite (TFC) membranes for the removal of trace organic compounds (TOrCs) by tuning the chemistry of its top active layer. The TFC membranes were synthesized by interfacial polymerization (IP) reaction between amine-containing monomers, e.g., meta-phenylene diamine (MPD) or para-phenylenediamine (PPD), and an acid chloride monomer, e.g., trimesoyl chloride (TMC). Owing to three free amine functionals over main core, melamine was used in the amine monomers solution to increase cross-linking among polyamide chains. Chemical and morphological characterization of the prepared membranes confirmed that melamine was successfully incorporated into the chemical structure of the top PA layer. Two agricultural toxic materials (atrazine and diazinon) were used to investigate the capability of the newly fabricated membranes in the removal of TOrCs. The obtained results showed that melamine-improved FO membranes provided higher atrazine and diazinon rejections in two different FO membrane configurations, including active layer facing feed solution (ALF) and active layer facing draw solution (ALD). The highest rejections of both diazinon (99.4%) and atrazine (97.3%) were achieved when the melamine modified MPD-based membrane served in ALF mode with 2 M NaCl as a draw solution.


Subject(s)
Humic Substances/analysis , Osmosis/physiology , Water Purification/instrumentation , Water Purification/methods , Atrazine/analysis , Diazinon/analysis , Membranes, Artificial , Nylons/chemistry , Phenylenediamines/chemistry , Polymerization , Sodium Chloride/chemistry , Triazines/chemistry , Tricarboxylic Acids/chemistry , Water/chemistry
17.
Sci Total Environ ; 704: 135365, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31796283

ABSTRACT

In this study, a thin layer of polyaniline (PANI)-reduced graphene oxide (rGO) was laminated on polyethersulfone (PES) support by pressure-assisted technique. Organic fouling on the resulting robust and electro-conductive membranes reduced significantly by applying an external electric field. The electrical conductivity of pristine PANI film was 0.46 S/m while it was increased up to 84.53 S/m by adding appropriate amount of rGO. Both anodic and cathodic potentials in a wide range were applied to the prepared membranes using synthetic sodium alginate and real oil sands boiler feed water (BFW) waste of Alberta, Canada. Filtration tests showed that fouling resistance of electro-oxidative membranes towards sodium alginate improved, and 31.9% flux decline recovered when 2 V anodic cell potential was applied. By increasing the applied voltage from 3 V to 9 V, the antifouling property of membrane, as well as flux recovery ratio (FRR), improved dramatically and reached to 97.47% in the anodic setting. Such a significant improvement was attributed to electrostatic repulsive force between foulant and membrane surface, massive gas bubble generation, and electro-oxidation reactions. The cathodic electro-reduction configuration was also tested for BFW, where water flux decline and rejection performance were both improved by elevating electric potential.

18.
Sci Total Environ ; 711: 134951, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31812409

ABSTRACT

The major problem that limits the utilization of PES membranes in treatment of oily wastewater is the drastic irreversible membrane fouling due to the attachment of oil droplets onto the membrane surface. The goal of this study was to develop a novel, fast and facile post-functionalization of polydopamine (PDA) coated membranes using pre-synthesized nanoparticles for fabrication of novel organic-inorganic hybrid recoverable membranes with high hydrophilicity and underwater oleophobicity. Here, bio-inspired technique was studied because the membrane technology could separate small oil droplets (even <10 µm) with high performance if faced little fouling phenomena during the treatment process. The amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) were anchored onto the PDA coated PES membranes. The membranes characteristics, with specific focus on surface morphology and wettability were investigated. The newly developed PES/PDA/N-MWCNTs membranes showed an enhanced flux (~1086%) compared to the unmodified PES membrane. This enhancement was attributed to the high hydrophilic and underwater oleophobic properties, which were found to alleviate the effect of fouling. The total fouling ratio (Rt) of the PES/PDA/N-MWCNTs membrane was 22.35%, which was far lower than that of the unmodified PES membrane (98.38%). Meanwhile, most of the fouling was reversible for the former with the remaining (irreversible fouling) of 18.08%. It was concluded that cake filtration is the dominant fouling mechanism of the PES/PDA/N-MWCNTs membranes due to their average pore diameter. The modified membranes showed high oil rejection (>99%) so that the obtained clean water with oil concentration lower than 5 ppm met the wastewater discharge standard recommendations. Also, evaluation of the PES/PDA/N-MWCNT membrane in cross-flow filtration showed its antifouling properties in the long-term application (16 h).

19.
ACS Appl Mater Interfaces ; 12(2): 2916-2925, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31841298

ABSTRACT

Developing thermally stable polymer membranes for high-temperature water treatment is in high demand, as the recommended usage temperatures of most commercial membranes are lower than 50 °C. In this study, we synthesized novel thin film composite polyamide membranes by modifying the chemical structure of their selective layers. Triaminopyrimidine was used to synthesize a polyamide selective layer with high cross-linking density over a microporous poly(ether sulfone) support. The addition of triamiopyrimidine to the classic m-phenylenediamine/trimesoyl chloride combination remarkably improved the permeation of the membranes. All synthesized thin film composite membranes showed consistent permeate flux for 9 h of operation at 75 °C with only a slight reduction in salt rejection. This study provides a promising and reproducible methodology to develop thermally stable high-flux thin film composite membranes, opening up a new paradigm for high-temperature water treatment processes.

20.
Langmuir ; 35(37): 12139-12149, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31419149

ABSTRACT

Microstructuring the surface of membranes is recognized as one of the effective strategies to mitigate the fouling phenomenon. Over the years, significant efforts have been undertaken to develop new techniques for altering the membrane surface topography at the micro- and nanoscale. However, all the previously suggested approaches suffer from some serious drawbacks that impede their widespread implementations, including cost, time, and cumbersomeness. In this study, we show that the electrohydrodynamic (EHD) patterning process can be successfully adopted to form surface patterns on polyethersulfone (PES) microfiltration membranes. The linear stability analysis and nonlinear numerical simulation are performed to theoretically predict the size of the created raised columnar structure (often called pillars). In contrast to the conventional EHD patterning process, the developed method works at room temperature and nonsolvent-induced phase separation is used to solidify the formed structures. An array of pillars was formed on the membrane surface, whose height and width were found to be as low as 31 ± 5 and 98 ± 12 µm, respectively. It is demonstrated that fabricating surface-patterned PES membranes does not require sophisticated facilities and precise control of process condition using this simple moldless method.

SELECTION OF CITATIONS
SEARCH DETAIL
...