Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Data Brief ; 48: 109186, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383792

ABSTRACT

Samples of Crustacea and Annelida (Polychaeta, Sipuncula, and Hirudinea) were collected in the Bering Sea and the northwestern Pacific Ocean during scientific cruise SO-249 BERING in 2016. Biological samples were collected from 32 locations by the team on-board RV Sonne using a chain bag dredge at depths ranging between 330-5,070 m, and preserved in 96% ethanol. Specimens were morphologically identified to the lowest taxonomic level possible using a Leica M60 stereomicroscope. The generated data here comprise taxonomic information as well as annotated bathymetric and biogeographic information from a total of 78 samples (26 Crustacea, 47 Polychaeta, 4 Sipuncula, and 1 Hirudinea). The dataset was prepared following Darwin Core Biodiversity standards for FAIR data sharing based on Ocean Biodiversity Information System (OBIS) and Global Biodiversity Facility (GBIF) guidelines. The standardised digitised data were then mobilised to both OBIS and GBIF under CC BY 4.0 licence to publicly share and adopt the data. As records of these important marine taxa from bathyal and abyssal depths are sparse, especially from the deep Bering Sea, the herein generated and digitised data aid in filling existing knowledge gaps on their diversity and distribution in that region. As part of the "Biogeography of the NW Pacific deep-sea fauna and their possible future invasions into the Arctic Ocean" (BENEFICIAL) project, this dataset thus not only increases our knowledge in re-assessing and uncovering the deep-sea diversity of these taxa, but also serves policy and management sectors by providing first-hand data for global report assessments.

2.
J Therm Biol ; 92: 102692, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32888577

ABSTRACT

Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of mangrove crabs decreases towards the higher latitudes and tested the importance of environmental factors such as Sea Surface Temperature (SST) in creating the latitudinal gradients in species richness of mangrove crabs. A total of 8262 distribution records of 481 species belonging to six families of mangrove crabs including Camptandriidae, Dotillidae, Macrophthalmidae, Ocypodidae, Sesarmidae, and Oziidae were extracted from open-access databases or collected by the authors, quality controlled, cleaned, and analyzed. Species richness was plotted against 5° latitudinal bands in relation to environmental factors. The R software and ArcGIS 10.6.1 were used to analyze the species latitudinal range and richness as well as to map the distribution of mangrove forest, endemic species, species geographical distribution records, and biogeographic regions. The Indo-West Pacific showed the highest species richness of mangrove crabs where more than 65% of species were found in the Indian Ocean and along the western Pacific Ocean. Our results showed that there are 11 significantly different biogeographic regions of mangrove crabs. The highest endemicity rate was observed in the NW Pacific Ocean (29%). Latitudinal patterns of species richness in Macrophthalmidae, Ocypodidae, and Sesarmidae showed an increasing trend from the poles toward the intermediate latitudes including one dip near the equator. However, latitudinal gradients in Camptandriidae, Dotillidae, and Oziidae were unimodal increasing from the higher latitudes towards the equator. Species richness per 5° latitudinal bands significantly increased following mean SST mean (°C), calcite, euphotic depth (m), and mangrove area (km2) across all latitudes, and tide average within each hemisphere. Species richness significantly decreased with dissolved O2 (ml l-1) and nitrate (µmol l-1) over all latitudes and in the southern hemisphere. The climax of global latitudinal species richness for some mangrove was observed along latitudes 20° N and 15°-25° S, not at the equator. This can suggest that temperature is probably the key driver of latitudinal gradients of mangrove crabs' species richness. Species richness and mangrove area were also highly correlated.


Subject(s)
Biodiversity , Brachyura/physiology , Animals , Ecosystem , Pacific Ocean , Temperature
3.
PeerJ ; 7: e7221, 2019.
Article in English | MEDLINE | ID: mdl-31681508

ABSTRACT

In 2010, the Conference of the Parties of the Convention on Biological Diversity agreed on the Strategic Plan for Biodiversity 2011-2020 in Aichi Prefecture, Japan. As this plan approaches its end, we discussed whether marine biodiversity and prediction studies were nearing the Aichi Targets during the 4th World Conference on Marine Biodiversity held in Montreal, Canada in June 2018. This article summarises the outcome of a five-day group discussion on how global marine biodiversity studies should be focused further to better understand the patterns of biodiversity. We discussed and reviewed seven fundamental biodiversity priorities related to nine Aichi Targets focusing on global biodiversity discovery and predictions to improve and enhance biodiversity data standards (quantity and quality), tools and techniques, spatial and temporal scale framing, and stewardship and dissemination. We discuss how identifying biodiversity knowledge gaps and promoting efforts have and will reduce such gaps, including via the use of new databases, tools and technology, and how these resources could be improved in the future. The group recognised significant progress toward Target 19 in relation to scientific knowledge, but negligible progress with regard to Targets 6 to 13 which aimed to safeguard and reduce human impacts on biodiversity.

4.
Sci Rep ; 9(1): 9303, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31243329

ABSTRACT

Global scale analyses have recently revealed that the latitudinal gradient in marine species richness is bimodal, peaking at low-mid latitudes but with a dip at the equator; and that marine species richness decreases with depth in many taxa. However, these overall and independently studied patterns may conceal regional differences that help support or qualify the causes in these gradients. Here, we analysed both latitudinal and depth gradients of species richness in the NW Pacific and its adjacent Arctic Ocean. We analysed 324,916 distribution records of 17,414 species from 0 to 10,900 m depth, latitude 0 to 90°N, and longitude 100 to 180°N. Species richness per c. 50 000 km2 hexagonal cells was calculated as alpha (local average), gamma (regional total) and ES50 (estimated species for 50 records) per latitudinal band and depth interval. We found that average ES50 and gamma species richness decreased per 5° latitudinal bands and 100 m depth intervals. However, average ES50 per hexagon showed that the highest species richness peaked around depth 2,000 m where the highest total number of species recorded. Most (83%) species occurred in shallow depths (0 to 500 m). The area around Bohol Island in the Philippines had the highest alpha species richness (more than 8,000 species per 50,000 km2). Both alpha and gamma diversity trends increased from the equator to latitude 10°N, then further decreased, but reached another peak at higher latitudes. The latitudes 60-70°N had the lowest gamma and alpha diversity where there is almost no ocean in our study area. Model selection on Generalized Additive Models (GAMs) showed that the combined effects of all environmental predictors produced the best model driving species richness in both shallow and deep sea. The results thus support recent hypotheses that biodiversity, while highest in the tropics and coastal depths, is decreasing at the equator and decreases with depth below ~2000 m. While we do find the declines of species richness with latitude and depth that reflect temperature gradients, local scale richness proved poorly correlated with many environmental variables. This demonstrates that while regional scale patterns in species richness may be related to temperature, that local scale richness depends on a greater variety of variables.

5.
Water Res ; 157: 94-105, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30953859

ABSTRACT

National and subnational burden of disease attributable to elevated fluoride levels in drinking water apportioned by sex, age group, province, and community type in Iran, 2017 were quantified based on disability-adjusted life years (DALYs). The attributable burden of disease was estimated using four input data: (1) effect size of elevated drinking water fluoride levels for dental and skeletal fluorosis, (2) population distribution of drinking water fluoride levels, (3) the threshold levels of fluoride in drinking water for contribution in dental and skeletal fluorosis, and (4) age-sex distribution of population. The attributable burden of disease was only related to dental fluorosis, because the fluoride levels were lower than the threshold value for skeletal fluorosis (4.0 mg/L) in all of the cases. The national attributable prevalence (per 100,000 people), DALYs, and DALY rate in 2017 were calculated to be 60 (95% uncertainty interval 48-69), 3443 (1034-6940), and 4.31 (1.29-8.68), respectively. The national attributable burden of disease was not significantly different by sex, but was affected by age and community type in a manner that the highest DALY rate was related to the age group 10-14 y (6.06 [1.82-12.21]) and over 66% of the national attributable DALYs occurred in rural communities. The attributable burden of disease occurred only in 10 out of 31 provinces and about 94% of the attributable DALYs were concentrated in four provinces Fars (1967 [592-3964]), Bushehr (414 [124-836]), West Azarbaijan (400 [120-808]), and Hormozgan (377 [113-761]). Implementation of fluoride-safe drinking water supply schemes in the four leading provinces can prevent most of the national health losses and partly compensate the increasing trend of disease burden from oral conditions at the national level.


Subject(s)
Disabled Persons , Drinking Water , Female , Fluorides , Humans , Iran , Male , Quality-Adjusted Life Years
6.
Biodivers Data J ; (7): e31375, 2019.
Article in English | MEDLINE | ID: mdl-30740024

ABSTRACT

BACKGROUND: Using this dataset, we examined the global geographical distributions of Solenidae species in relation to their endemicity, species richness and latitudinal ranges and then predicted their distributions under future climate change using species distribution modelling techniques (Saeedi et al. 2016a, Saeedi et al. 2016b). We found that the global latitudinal species richness in Solenidae is bi-modal, dipping at the equator most likely derived by high sea surface temperature (Saeedi et al. 2016b). We also found that most of the Solenidae species will shift their distribution ranges polewards due to global warming (Saeedi et al. 2016a). We also provided a comprehensive review of the taxon to test whether the latitudinal gradient in species richness was uni-modal with a peak in the tropics or northern hemisphere or asymmetric and bimodal as proposed previously (Chaudhary et al. 2016). NEW INFORMATION: This paper presents an integrated global geographic distribution dataset for 77 Solenidae taxa, including 3,034 geographic distribution records. This dataset was compiled after a careful data-collection and cleaning procedure over four years. Data were collected using field sampling, literature and from open-access databases. Then all the records went through quality control procedures such as validating the taxonomy of the species by examining and re-identifying the specimens in museum collections and using taxonomic and geographic data quality control tools in the World Register of Marine Species (WoRMS) and the r-OBIS package (Provoost and Bosch 2017). This dataset can thus be further used for taxonomical and biogeographical studies of Solenidae.

7.
PLoS One ; 14(12): e0218904, 2019.
Article in English | MEDLINE | ID: mdl-31891586

ABSTRACT

Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem.


Subject(s)
Classification/methods , Image Processing, Computer-Assisted/standards , Marine Biology/standards , Animals , Artificial Intelligence , Biodiversity , Data Curation/methods , Data Curation/standards , Databases, Factual , Ecology , Ecosystem , Image Processing, Computer-Assisted/methods , Marine Biology/classification
9.
Trends Ecol Evol ; 31(9): 670-676, 2016 09.
Article in English | MEDLINE | ID: mdl-27372733

ABSTRACT

The paradigm for the latitudinal gradient in species richness is that it is unimodal with a tropical peak. For 27 published studies, and global datasets of 65 000 recent and 50 000 fossil marine species, we found that almost all datasets were significantly bimodal with a dip in species richness near the equator. The locations of mid-latitude peaks varied between taxa and were higher in the northern hemisphere where the continental shelf is greatest. Our findings support hypotheses of tropical species evolving in response to temperature variation near the edges of the tropics and available high-productivity habitat. They suggest that the equator may already be too hot for some species and that the modes may move further apart due to climate warming.


Subject(s)
Biodiversity , Climate , Ecosystem , Fossils
10.
PLoS One ; 8(5): e63487, 2013.
Article in English | MEDLINE | ID: mdl-23691053

ABSTRACT

Solenidae are deep burrowing bivalves inhabiting intertidal and shallow sub-tidal soft bottom sediments mostly in tropical and sub-tropical areas. Solen dactylus has a restricted distribution within the Indian Ocean. Solen dactylus is frequently found on the sandy-muddy coast of the northern Persian Gulf, Iran. Specimens of S. dactylus were collected since 2006 from Bandar Abbas to study their biology and ecology. During these studies, an unexpected pair of anterior pallial tentacles at the dorsal end of the anterior pallial crest of the mantle was found. In the tentacles, two kinds of epithelial cells (pyramidal and vacuolated) and fibres (radial and longitudinal), and a branch of the pallial nerve located in the centre of a haemocoel, were determined. A possible coherence of a furrow parallel to the anterior shell margin with the presence of anterior pallial tentacles is discussed. All species with long anterior pallial tentacles have anterior shell furrows. Anterior pallial tentacles were found in 10 species of Solenidae from Asia to the Middle East and Europe. The function of the tentacles is unknown. However, more species need to be examined for anterior pallial tentacles and anterior shell furrows to determine if they reflect a common evolutionary history or ecology.


Subject(s)
Bivalvia/anatomy & histology , Animals , Bivalvia/physiology , Evolution, Molecular , Iran , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...