Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Lab ; 70(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38213217

ABSTRACT

BACKGROUND: ß-thalassemia is an inherited disorder caused by defects in the synthesis of the beta-globin chain. One of the significant clinical complications in ß-thalassemia intermedia is iron overload toxicity, which may be attributed to reduced levels of hepcidin. This reduction in hepcidin leads to increased absorption of iron in the intestines, ultimately resulting in iron overload. The objective of this study was to assess the impact of curcumin on the expression of growth differentiating factor-15 (GDF-15) and hepcidin genes in patients with beta-thalassemia intermedia. METHODS: This study was designed as a randomized controlled double-blind clinical trial. Prior to and after the intervention period with curcumin, a blood sample of 5 mL was collected from both the placebo and curcumin-treated groups for the assessment of hepcidin and growth differentiating factor-15 gene expression. RESULTS: This study revealed a significant reduction in the expression of growth differentiating factor-15 in the curcumin group compared to the placebo group during the 3-month treatment period. Furthermore, curcumin supplementation led to a remarkable 10.1-fold increase in the levels of hepcidin in the curcumin group compared to the placebo group. CONCLUSIONS: The results of this study show that curcumin administration increases the mRNA levels of hepcidin in whole blood of thalassemia intermedia patients and supports the idea that curcumin could be a potential treatment to reduce suppression of hepcidin in thalassemias and other iron-loading anemias. CONCLUSIONS: The results of this study show that curcumin administration increases the mRNA levels of hepcidin in whole blood of thalassemia intermedia patients and supports the idea that curcumin could be a potential treatment to reduce suppression of hepcidin in thalassemias and other iron-loading anemias.


Subject(s)
Curcumin , Iron Overload , beta-Thalassemia , Humans , Hepcidins/genetics , Growth Differentiation Factor 15/genetics , beta-Thalassemia/drug therapy , beta-Thalassemia/genetics , Curcumin/pharmacology , Curcumin/therapeutic use , Iron , Iron Overload/drug therapy , Iron Overload/genetics , RNA, Messenger/genetics , Gene Expression
2.
Hemoglobin ; 47(2): 56-70, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37325871

ABSTRACT

The thalassemia issue is a growing worldwide health concern that anticipates the number of patients suffering from the disease will soon increase significantly. Patients with ß-thalassemia intermedia (ß-TI) manifest mild to intermediate levels of anemia, which is a reason for it to be clinically located between thalassemia minor and ß-thalassemia major (ß-TM). Notably, the determination of the actual rate of ß-TI is more complicated than ß-TM. The leading cause of this illness could be partial repression of ß-globin protein production; accordingly, the rate of ß-globin gene repression is different in patients, and the gene repression intensity creates a different clinical status. This review article provides an overview of functional mechanisms, advantages, and disadvantages of the classic to latest new treatments for this group of patients, depending on the disease severity divided into the typical management strategies for patients with ß-TI such as fetal hemoglobin (Hb) induction, splenectomy, bone marrow transplantation (BMT), transfusion therapy, and herbal and chemical iron chelators. Recently, novel erythropoiesis-stimulating agents have been added. Novel strategies are subclassified into molecular and cellular interventions. Genome editing is one of the efficient molecular therapies for improving hemoglobinopathies, especially ß-TI. It encompasses high-fidelity DNA repair (HDR), base and prime editing, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 procedure, nuclease-free strategies, and epigenetic modulation. In cellular interventions, we mentioned the approach pattern to improve erythropoiesis impairments in translational models and patients with ß-TI that involve activin II receptor traps, Janus-associated kinase 2 (JAK2) inhibitors, and iron metabolism regulation.


Subject(s)
Thalassemia , beta-Thalassemia , Humans , Thalassemia/genetics , Thalassemia/therapy , Thalassemia/complications , beta-Thalassemia/genetics , beta-Thalassemia/therapy , beta-Thalassemia/complications , Iron/metabolism , Iron Chelating Agents/therapeutic use , beta-Globins/genetics
3.
Clin Lab ; 68(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254032

ABSTRACT

BACKGROUND: ß-thalassemia is an inherited disorder that stems from a defect in beta-globin chain synthesis. Iron overload toxicity is one of the major clinical complications in ß-thalassemia that may be due to a reduction in the hepcidin level. As a result, intestinal iron absorption increases and finally iron overload occurs. The current study aimed to investigate the effect of curcumin on serum iron status, ferritin, and transferrin in patients with ß-thalas-semia intermedia. METHODS: This study was a randomized, controlled, double-blind clinical trial. Before and after the intervention period with curcumin, 5 ml blood was taken for the measurement of the entire index related to iron status. RESULTS: Our results demonstrated the levels of serum iron (p-value < 0.001), ferritin (p-value = 0.002), and transferrin saturation (p-value < 0.001) significantly decreased in the curcumin group compared to placebo. CONCLUSIONS: The data presented in this article show that curcumin supplementation would be effective in alleviating iron overload in patients with ß-thalassemia intermedia.


Subject(s)
Curcumin , Iron Overload , beta-Thalassemia , Curcumin/therapeutic use , Double-Blind Method , Ferritins/metabolism , Humans , Iron/metabolism , Iron Overload/complications , Iron Overload/drug therapy , Iron Overload/metabolism , beta-Thalassemia/complications , beta-Thalassemia/drug therapy , beta-Thalassemia/metabolism
4.
Immunol Res ; 70(3): 316-324, 2022 06.
Article in English | MEDLINE | ID: mdl-35260945

ABSTRACT

Undoubtfully, the normal immune system can make a potential response to variable pathogens and neutralize or kill them depending on the type of infection through innate and acquired immunity. Cytokines have poly-peptide nature and are considered as signaling molecules that could amplify or alleviate immune responses besides their other biological functions. Interleukin 38 (IL-38) is a member of the IL-1 family cytokine that, however, its anti-inflammatory role has been observed in different autoimmune diseases like systemic lupus erythematosus (SLE), psoriasis, and Sjogren's syndrome; there is a controversy about the cytokine pro-inflammatory function. In the current review, we skimmed IL-38 structure, signaling mechanism, and its immunological functions, IL-38-producing immune cells. Also, we argued about the role of this cytokine in viral infections including hepatitis B (HBV), hepatitis C (HCV), influenza (Flu), and COVID-19. Also, it illustrated the IL-38 protective effects on sepsis. Moreover, we explained the modulatory role of IL-38 in the COVID-19 cytokine storm.


Subject(s)
Autoimmune Diseases , COVID-19 , Communicable Diseases , Cytokine Release Syndrome , Cytokines , Humans , Interleukins
5.
Mol Biol Rep ; 48(10): 6749-6756, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34424445

ABSTRACT

BACKGROUND: Metastasis is a major cause of death in Colorectal cancer (CRC) patients, and the Epithelial-mesenchymal transition (EMT) has been known to be a crucial event in cancer metastasis. Downregulated expression of AT-rich interaction domain-containing protein 1A (ARID1A), a bona fide tumor suppressor gene, plays an important role in promoting EMT and CRC metastasis, but the underlying molecular mechanisms remain poorly understood. Here, we evaluated the impact of ARID1A knockdown and overexpression on the expression of EMT­related genes, E-cadherin and ß-catenin, in human CRC cells. METHODS AND RESULTS: The expression levels of ARID1A, E-cadherin and ß-catenin in CRC cell lines were detected via real-time quantitative PCR (qPCR) and western blot. ARID1A overexpression and shRNA-mediated knockdown were performed to indicate the effect of ARID1A expression on E-cadherin and ß-catenin expression in CRC cell lines. The effect of ARID1A knockdown on the migration ability of HCT116 cells was assessed using wound-healing assay. We found that the mRNA and protein expression of adhesive protein E-cadherin was remarkably downregulated in response to shRNA-mediated ARID1A knockdown in HCT116 and HT29 cells. Conversely, overexpression of ARID1A in SW48 cells significantly increased E-cadherin expression. In addition, ARID1A silencing promoted the migration of HCT116 cells. ARID1A knockdown and overexpression did not alter the level of ß-catenin expression. CONCLUSIONS: Our study demonstrates that E-cadherin levels were closely correlated with ARID1A expression. Thus, ARID1A downregulation may promote CRC metastasis through decreasing EMT­related protein E-cadherin and promoting epithelial cell movement. ARID1A could represent a promising candidate therapeutic target for CRC.


Subject(s)
Antigens, CD/genetics , Cadherins/genetics , Colorectal Neoplasms/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Molecular Targeted Therapy , Transcription Factors/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Gene Knockdown Techniques , Gene Silencing , HEK293 Cells , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , beta Catenin/metabolism
6.
Ann Hematol ; 100(3): 627-633, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33432439

ABSTRACT

Thalassemia intermedia is a subgroup of ß-thalassemia which originates from mutations in the beta-globin gene. Zinc and copper play important roles in the metabolism. Due to its significant therapeutic effects, curcumin has led many studies to focus on curcumin. In a double-blind clinical trial study, 30 patients with beta-thalassemia intermedia with an age range of 20 to 35 years were randomly selected 1:1 to receive either curcumin or placebo for 3 months. Before and after the intervention period, 5 ml of blood was taken to determine the serum levels of zinc and copper. The laboratory tests were checked at baseline and at the end of the treatment. While the serum levels of zinc and zinc/copper significantly increased, the serum levels of copper decreased after 3 months of curcumin intake. In addition, on the basis of baseline characteristics, a negative correlation was found between zinc and body mass index and positive correlations were identified between copper with triglyceride and high-density lipoprotein. Also, the level of ferritin protein in the curcumin group compared to the placebo group showed a significant decrease after 3 months of curcumin use. Therefore, it could be concluded that curcumin might exert a net protective effect on copper toxicity in thalassemia intermedia patients. The investigation also implicated that curcumin represents an approach to regulating zinc homeostasis and may be useful as a complementary treatment of patients with thalassemia intermedia, especially in patients with zinc deficiency or low serum zinc/copper ratio. Clinical Trial Registration Number: IRCT20190902044668N1.


Subject(s)
Copper/blood , Curcumin/pharmacology , Zinc/blood , beta-Thalassemia/blood , Administration, Oral , Adult , Blood Chemical Analysis , Capsules , Copper/analysis , Curcumin/administration & dosage , Double-Blind Method , Ferritins/analysis , Ferritins/blood , Humans , Iran , Male , Young Adult , Zinc/analysis , beta-Thalassemia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...