Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anal Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809340

ABSTRACT

Metal-organic frameworks (MOFs) are widely used for gas adsorption, separation, and sensing materials. In most cases, MOFs are not used in their crystal form but as impregnated materials because the fine crystals result in high-pressure drops. One key characteristic of MOF-impregnated materials is the amount of MOF in the material. This is evaluated using the wet digestion method; however, it is limited to determining only the metal content. Moreover, some metal, denoted as free metal, will not react with ligands to form MOFs. Additionally, it is crucial to determine the ligand amount, which cannot be determined using wet digestion. In the present study, a two-step extraction method for copper (II) benzene-1,3,5-tricarboxylate (Cu-BTC MOF) impregnated materials was developed to determine the MOF formed and free metals and ligands. Various solvents were applied to evaluate the extraction efficiencies. The results led to the selection of ethanol (EtOH) for extracting free Cu2+ and BTC, while 0.3 M HNO3 was chosen to extract MOF-formed Cu2+ and BTC. The MOF-impregnated sample material was first extracted using EtOH and then 0.3 M HNO3. The Cu2+ and BTC in the obtained extract solutions, as well as EtOH and HNO3, were analyzed using flame atomic absorption spectroscopy and high-performance liquid chromatography, respectively. In standard addition tests, free and MOF-formed Cu2+ and BTC were quantitatively extracted from MOF-impregnated materials. The developed two-step analysis method was successfully applied to Cu-BTC-impregnated materials used in gas sensing.

2.
Commun Biol ; 6(1): 1194, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001159

ABSTRACT

Phytoplanktonic dinoflagellates form colonies between vertical ice crystals during the ice-melting season in Lake Baikal, but how the plankton survive the freezing conditions is not known. Here we show that the phytoplankton produces large amounts of dimethylsulfoniopropionate (DMSP), which is best-known as a marine compound. Lake-water DMSP concentrations in the spring season are comparable with those in the oceans, and colony water in ice exhibits extremely high concentrations. DMSP concentration of surface water correlates with plankton density and reaches a maximum in mid-April, with temperature-dependent fluctuations. DMSP is released from plankton cells into water in warm days. DMSP is a characteristic osmolyte of marine algae; our results demonstrate that freshwater plankton, Gymnodinium baicalense, has DMSP-producing ability, and efficiently uses the limited sulfur resource (only 1/500 of sea sulfate) to survive in freshwater ice. Plankton in Lake Baikal do not need an osmolyte, and our results clearly indicate that DMSP plays a cryoprotective role. DMSP, although a characteristic marine compound, could also be an important zwitterion for algae of other boreal lakes, alpine snow, and glaciers.


Subject(s)
Dinoflagellida , Phytoplankton , Lakes , Ice Cover , Plankton , Water
3.
Appl Opt ; 60(13): 3689-3698, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983301

ABSTRACT

In recent years, with the development of precise lathe-cutting equipment, special shaped contact lenses (CL) have been crafted. However, while it is possible to manufacture such a lens, its shape evaluation has not been well-established. We conducted a basic optical experiment using special lenses to measure a spherical lens and nonspherical mold. As the measurement sample, a metal ball, special CL, and a toric-shaped mold were adopted. In order to accurately measure those real shapes, we proposed an algorithm in which the probe light is vertically incident to the sample surface within a numerical aperture of the optical probe. For this algorithm, we developed the specialized time-domain optical coherence tomography (TD-OCT), which was designed to conduct circular scanning while maintaining vertical incidence by driving a two-axis (vertical and horizontal) micro-electromechanical system mirror with a phase difference of 90°. The shape, thickness distribution, and curvature radii of both front and back surfaces of a CL were estimated with this OCT signal analysis and sphere fitting. The shape and curvature radius were evaluated by using the simulated data under the same experimental conditions. They were sufficiently accurate based on the resolution of this OCT. Also, a toric-shaped mold was evaluated by comparing the relationship between each coordinate and intensity of the interference signal. As a result, it is confirmed that the experimental result and the simulated matched well.

4.
Commun Biol ; 4(1): 149, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526835

ABSTRACT

Finding prey is essential to survival, with marine predators hypothesised to track chemicals such as dimethyl sulfide (DMS) while foraging. Many predators are attracted to artificially released DMS, and laboratory experiments have shown that zooplankton grazing on phytoplankton accelerates DMS release. However, whether natural DMS concentrations are useful for predators and correlated to areas of high prey biomass remains a fundamental knowledge gap. Here, we used concurrent hydroacoustic surveys and in situ DMS measurements to present evidence that zooplankton biomass is spatially correlated to natural DMS concentration in air and seawater. Using agent simulations, we also show that following gradients of DMS would lead zooplankton predators to areas of higher prey biomass than swimming randomly. Further understanding of the conditions and scales over which these gradients occur, and how they are used by predators, is essential to predicting the impact of future changes in the ocean on predator foraging success.


Subject(s)
Aquatic Organisms/physiology , Predatory Behavior/drug effects , Sulfides/pharmacology , Animal Migration/drug effects , Animal Migration/physiology , Animals , Aquatic Organisms/drug effects , Biomass , Dose-Response Relationship, Drug , Food Chain , Massachusetts , Osmolar Concentration , Phytoplankton/metabolism , Quorum Sensing/physiology , Seawater/chemistry , Sulfides/metabolism , Zooplankton/metabolism , Zooplankton/physiology
5.
Appl Opt ; 59(28): 9051-9059, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33104595

ABSTRACT

The optical measurement algorithm for the real front and back surfaces of contact lenses from their center to periphery accurately and simultaneously is proposed. It is an algorithm that makes light incident vertically along the curved surfaces of contact lenses under the condition that the difference of curvature radii between the front and back surfaces is small enough within the NA of the optical probe. For this purpose, we adopted time-domain optical coherence tomography (OCT) with translation and rotation mechanisms. The shape, thickness distribution, and curvature radii of both surfaces were estimated with OCT signal analysis and circular approximation. The measured results were compared with the designed values and the measured data from a conventional shape measurement device. The curved shape of both surfaces and thickness were well matched with the designed values from lens center to periphery. In a curvature radius of the front surface, there was a proportional bias with a limit of agreement of -0.77% to -2.09%, and the correlation coefficient was 0.57. On the back surface, there was no systematic bias, and minimal detectable change was 0.178 mm, in a range of 95% confidential interval. The proposed algorithm well visualized the real shape and optical characteristics of the contact lens with enough accuracy to the design.

6.
Environ Sci Process Impacts ; 22(7): 1514-1524, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32555872

ABSTRACT

Heavy metals in particulate matter (PM) are of great concern, and their effects on the environment and human health depend on their solubilities and species present. In this study, the solubility of As, Se, Sb, V and Cr and their species eluted in water was investigated. As, Se, Sb, and V were present mostly in fine particles, and they were predominantly water-soluble in fine particles (<2.5 µm, PM2.5) but insoluble in coarse particles (>2.5 µm). Solubility of Cr was poor even in fine particles. It was found that for fine particles, solubilities of the heavy metals were related to the nitrate and sulfate contents. This suggests that the higher the acidity of the particles, the higher the solubility of the heavy metals. Oxoanions of the five kinds of heavy metals in water extracts of fine particles were determined by inductively coupled plasma mass spectrometry preceded by ion chromatography. The results suggested the presence of atmospheric oxidation during the aerosol transportation. Also, the As(iii)/As(v) (arsenite/arsenate) ratios for the fine particle extracts were related to the transition metal concentrations, which indicated that Fe, Cu, etc. in fine particles affected the As redox equilibrium. It was suggested that the heavy metals exist as complexes with iron hydroxide and dissolved organic matter in addition to the free oxoanions. These investigations were performed for PM samples collected in winter and summer in Kumamoto, west Japan, where the site is strongly exposed to westerly winds from continental East Asia. The obtained results improve our understanding of the behavior of the heavy metals in airborne PM after depositing on a wet environment and biota.


Subject(s)
Arsenic , Metals, Heavy , Selenium , Antimony , Chromium , Environmental Monitoring , Humans , Japan , Particulate Matter , Vanadium , Water
7.
Sci Rep ; 10(1): 8836, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483126

ABSTRACT

In plants, growth-defense tradeoffs are essential for optimizing plant performance and adaptation under stress conditions, such as pathogen attack. Root-knot nematodes (RKNs) cause severe economic losses in many crops worldwide, although little is known about the mechanisms that control plant growth and defense responses during nematode attack. Upon investigation of Arabidopsis thaliana infected with RKN (Meloidogyne incognita), we observed that the atypical transcription factor DP-E2F-like 1 (DEL1) repressed salicylic acid (SA) accumulation in RKN-induced galls. The DEL1-deficient Arabidopsis mutant (del1-1) exhibited excessive SA accumulation in galls and is more resistant to RKN infection. In addition, excessive lignification was observed in galls of del1-1. On the other hand, the root growth of del1-1 is reduced after RKN infection. Taken together, these findings suggest that DEL1 plays an important role in the balance between plant growth and defense responses to RKN infection by controlling SA accumulation and lignification.


Subject(s)
Arabidopsis/metabolism , Transcription Factors/metabolism , Tylenchoidea/physiology , Animals , Arabidopsis/growth & development , Arabidopsis/parasitology , Gene Expression Regulation, Plant , Host-Parasite Interactions , Lignin/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/parasitology , Plant Tumors/genetics , Plant Tumors/parasitology , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/parasitology , Salicylic Acid/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics
8.
Mol Plant ; 13(4): 658-665, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31891776

ABSTRACT

Root-knot nematodes (RKNs; genus Meloidogyne) are a class of plant parasites that infect the roots of many plant species. It is believed that RKNs target certain signaling molecules derived from plants to locate their hosts; however, currently, no plant compound has been unambiguously identified as a universal RKN attractant. To address this question, we screened a chemical library of synthetic compounds for Meloidogyne incognita attractants. The breakdown product of aminopropylamino-anthraquinone, 1,3-diaminopropane, as well as its related compounds, putrescine and cadaverine, were found to attract M. incognita. After examining various polyamines, M. incognita were found to be attracted specifically by natural compounds that possess three to five methylene groups between two terminal amino groups. Using cryo-TOF-SIMS/SEM, cadaverine was indeed detected in soybean root cortex cells and the surrounding rhizosphere, establishing a chemical gradient. In addition to cadaverine, putrescine and 1,3-diaminopropane were also detected in root exudate by HPLC-MS/MS. Furthermore, exogenously applied cadaverine is sufficient to enhance M. incognita infection of Arabidopsis seedlings. These results suggest that M. incognita is likely attracted by polyamines to locate the appropriate host plants, and the naturally occurring polyamines have potential applications in agriculture in developing protection strategies for crops from RKN infection.


Subject(s)
Chemotaxis/drug effects , Plant Roots/parasitology , Polyamines/pharmacology , Tylenchoidea/physiology , Animals , Host-Parasite Interactions , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Exudates/chemistry , Plant Roots/chemistry , Plants/chemistry , Plants/parasitology , Polyamines/chemistry , Rhizosphere , Seedlings/parasitology , Tylenchoidea/drug effects
9.
Anal Chem ; 91(16): 10484-10491, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31337210

ABSTRACT

An automated device has been developed to measure aqueous dimethyl sulfide (DMSaq), its precursor dimethylsulfoniopropionate (DMSP), and atmospheric gaseous dimethyl sulfide (DMSg). In addition to having a role in the oceanic atmosphere, DMS and DMSP have recently gained substantial interest within the biosciences and are suspected as chemoattractants for predators searching for prey. To provide the spatial resolution relevant for biogeochemical functions, fast and on-site analysis of these compounds is an important technique. The system described measures the dimethyl sulfur compounds by sequential vaporization of DMSaq and DMSP to their gas phase, which is then analyzed by chemiluminescence detection (SVG-CL). The device has five analysis modes (full, DMS, water, gas, and DMSP mode) that can be selected by the user depending on the required analyte or desired sampling rate. Seawater analyses were performed by the developed SVG-CL system and, simultaneously, by an ion molecule reaction-mass spectrometer and a gas chromatograph-flame photometric detector to verify quantitative analysis results. Results obtained by the new method/device agreed well with those by the other methods. Detection limits of the SVG-CL system are 0.02 ppbv and 0.04 nM for DMSg and DMSaq/DMSP, respectively, which are much better than those of the mass spectrometer. The SVG-CL system can be easily installed and operated on a boat. Spatial variability in DMS and DMSP off the coast of Japan were obtained, showing significant changes in the concentrations of the components at the brackish/saline water interface and at the channel between the closed and open seas.

10.
Eukaryot Cell ; 11(5): 638-44, 2012 May.
Article in English | MEDLINE | ID: mdl-22389384

ABSTRACT

Sexual reproduction is essential for the maintenance of species in a wide variety of multicellular organisms, and even unicellular organisms that normally proliferate asexually possess a sexual cycle because of its contribution to increased genetic diversity. Information concerning the molecules involved in fertilization is accumulating for many species of the metazoan, plant, and fungal lineages, and the evolutionary consideration of sexual reproduction systems is now an interesting issue. Macrocyst formation in the social amoeba Dictyostelium discoideum is a sexual process in which cells become sexually mature under dark and submerged conditions and fuse with complementary mating-type cells. In the present study, we isolated D. discoideum insertional mutants defective in sexual cell fusion and identified the relevant gene, macA, which encodes a highly glycosylated, 2,041-amino-acid membrane protein (MacA). Although its overall similarity is restricted to proteins of unknown function within dictyostelids, it contains LamGL and discoidin domains, which are implicated in cell adhesion. The growth and development of macA-null mutants were indistinguishable from those of the parental strain. The overexpression of macA using the V18 promoter in a macA-null mutant completely restored its sexual defects. Although the macA gene encoded exactly the same protein in a complementary mating-type strain, it was expressed at a much lower level. These results suggest that MacA is indispensable for gamete interactions in D. discoideum, probably via cell adhesion. There is a possibility that it is controlled in a mating-type-dependent manner.


Subject(s)
Dictyostelium/growth & development , Membrane Glycoproteins/chemistry , Protozoan Proteins/chemistry , Amino Acid Sequence , Cell Adhesion , Cell Membrane/chemistry , Conserved Sequence , Dictyostelium/genetics , Dictyostelium/metabolism , Discoidins , Gene Expression Regulation, Developmental , Genes, Protozoan , Glycosylation , Lectins/chemistry , Mutagenesis, Insertional/methods , Promoter Regions, Genetic , Protein Structure, Tertiary , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...