Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(6): e202214595, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36422061

ABSTRACT

A new family of highly unusual sesquarterpenoids (persicamidines A-E) exhibiting significant antiviral activity was isolated from a newly discovered actinobacterial strain, Kibdelosporangium persicum sp. nov., collected from a hot desert in Iran. Extensive NMR analysis unraveled a hexacyclic terpenoid molecule with a modified sugar moiety on one side and a highly unusual isourea moiety fused to the terpenoid structure. The structures of the five analogues differed only in the aminoalkyl side chain attached to the isourea moiety. Persicamidines A-E showed potent activity against hCoV-229E and SARS-CoV-2 viruses in the nanomolar range together with very good selectivity indices, making persicamidines promising as starting points for drug development.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Antiviral Agents/chemistry , SARS-CoV-2 , Plant Extracts
2.
Microbiol Resour Announc ; 10(50): e0091821, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34913719

ABSTRACT

Amycolatopsis sp. strain DSM 110486 and Pseudonocardia sp. strain DSM 110487 are two novel actinomycete species that were isolated from Hengam Island beach sand from the Persian Gulf. Here, we present the complete genome sequences of DSM 110486 and DSM 110487, with sizes of 10.98 Mbp and 10.33 Mbp, respectively.

3.
Article in English | MEDLINE | ID: mdl-33427607

ABSTRACT

Isolate 4NS15T was isolated from a neglected arid habitat in Kerman, Iran. The strain showed 16S rRNA gene sequence similarity values of 98.9 % to the type strains of Kibdelosporangium aridum subsp. aridum, Kibdelosporangium phytohabitans and Kibdelosporangium philippinense and 98.6 % to the type strain K. aridum subsp. largum, respectively. Genome-based phylogenetic analysis revealed that isolate 4NS15T is closely related to Kibdelosporangium aridum subsp. aridum DSM 43828T. The digital DNA-DNA hybridization value between the genome sequences of 4NS15T and strain DSM 43828T is 29.8 %. Strain 4NS15T produces long chains of spores without a sporangium-like structure which can be distinguished from other Kibdelosporangium species. Isolate 4NS15T has a genome size of 10.35 Mbp with a G+C content of 68.1 mol%. Whole-cell hydrolysates of isolate 4NS15T are rich in meso-diaminopimelic acid and cell-wall sugars such as arabinose, galactose, glucose and ribose. Major fatty acids (>10 %) are C16 : 0, iso-C16 : 0 and iso-C15 : 0. The phospholipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylhydroxyethanolamine, aminolipid and glycoaminolipid. The predominant menaquinone is MK-9(H4). Based on its phenotypic and genotypic characteristics, isolate 4NS15T (NCCB 100701=CIP 111705=DSM 110728) merits recognition as representing a novel species of the genus Kibdelosporangium, for which the name Kibdelosporangium persicum sp. nov. is proposed.


Subject(s)
Actinomyces/classification , Desert Climate , Phylogeny , Soil Microbiology , Actinomyces/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Iran , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
4.
Antibiotics (Basel) ; 10(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383910

ABSTRACT

Antibiotic producers have mainly been isolated from soil, which often has led to the rediscovery of known compounds. In this study, we identified the freshwater snail Physa acuta as an unexplored source for new antibiotic producers. The bacterial diversity associated with the snail was characterized by a metagenomic approach using cultivation-independent high-throughput sequencing. Although Actinobacteria represented only 2% of the bacterial community, the focus was laid on the isolation of the genus Streptomyces due to its potential to produce antibiotics. Three Streptomyces strains (7NS1, 7NS2 and 7NS3) were isolated from P. acuta, and the antimicrobial activity of the crude extracts were tested against a selection of Gram-positive and Gram-negative bacteria and fungi. 7NS3 showed the strongest activity against Gram-positive bacteria and, thus, was selected for genome sequencing and a phylogenomic analysis. 7NS3 represents a novel Streptomyces species, which was deposited as Streptomyces sp. DSM 110735 at the Leibniz Institute-German Collection of Microorganisms and Cell Cultures (DSMZ). Bioassay-guided high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analyses of crude extract fractions resulted in the detection of four compounds, one of which matched the compound characteristics of emycin A, an angucycline-like aromatic polyketide. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Our study demonstrates that freshwater snails like P. acuta can represent promising reservoirs for the isolation of new antibiotic-producing actinobacterial species.

SELECTION OF CITATIONS
SEARCH DETAIL