Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; : e0015924, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808977

ABSTRACT

The human respiratory syncytial virus (RSV) is considered one of the most common viruses that infect children globally. The virus is known to have extensive gene sequence variability within and between RSV groups A and B globally; however, there is no information on the whole-genome characterization and diversity of RSV in Kuwait. Therefore, this study aimed to sequence the entire genome of RSV strains isolated from patients with acute respiratory tract infection (ARTI) in Kuwait. Therefore, this study aimed to sequence the entire genome of RSV strains isolated from patients with ARTI in Kuwait. Between January 2020 and September 2022, 7,093 respiratory samples were collected from hospitalized infants, children, and adults and were analyzed for respiratory viruses by multiplex real-time PCR. Whole-genome sequencing using the Oxford Nanopore sequencing technology was performed on 84 RSV-positive samples. The results revealed a higher prevalence of group A (76%) than group B (24%) RSV isolates. Phylogenetic analysis showed that RSV-A strains clustered with the GA2.3.5 sub-genotype and RSV-B strains clustered with the GB5.0.5a sub-genotype; however, forming new lineages of RSV-A and RSV-B circulated in Kuwait during this period. Genetic variability was higher among the group A viruses than group B viruses, and the rate of synonymous and missense mutations was high in genes other than the G protein-coding gene. We also detected several known and unique molecular markers in different protein-coding genes. This is the first study in Kuwait to characterize the whole genomes of RSV A and B to identify the circulating genotypes, comprehend the genetic diversity and the evolution of the virus, and identify important genetic markers associated with specific genotypes.IMPORTANCEWhole-genome sequencing of respiratory syncytial virus (RSV) strains in Kuwait using MinION Nanopore technology was used to characterize and analyze the genotypes and sub-genotypes of the RSV circulating among patients with acute respiratory tract infections in Kuwait. This study also identified known and unknown gene mutations and imported genetic markers associated with specific genotypes. These results will assist in establishing a framework for RSV classification and allow for a better consideration of the mechanisms leading to the generation of diversity of RSV. In addition, these data will allow a comparison of vaccine viruses with those in Kuwait, providing useful insights into future vaccine and therapy strategies for RSV in Kuwait.

2.
Microorganisms ; 12(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38399651

ABSTRACT

BACKGROUND: Eukaryotes' whole-genome sequencing is crucial for species identification, gene detection, and protein annotation. Oxford Nanopore Technology (ONT) is an affordable and rapid platform for sequencing eukaryotes; however, the relatively higher error rates require computational and bioinformatic efforts to produce more accurate genome assemblies. Here, we evaluated the effect of read correction tools on eukaryote genome completeness, gene detection and protein annotation. METHODS: Reads generated by ONT of four eukaryotes, C. albicans, C. gattii, S. cerevisiae, and P. falciparum, were assembled using minimap2 and underwent three rounds of read correction using flye, medaka and racon. The generates consensus FASTA files were compared for total length (bp), genome completeness, gene detection, and protein-annotation by QUAST, BUSCO, BRAKER1 and InterProScan, respectively. RESULTS: Genome completeness was dependent on the assembly method rather than on the read correction tool; however, medaka performed better than flye and racon. Racon significantly performed better than flye and medaka in gene detection, while both racon and medaka significantly performed better than flye in protein-annotation. CONCLUSION: We show that three rounds of read correction significantly affect gene detection and protein annotation, which are dependent on assembly quality in preference to assembly completeness.

3.
Cytokine ; 176: 156546, 2024 04.
Article in English | MEDLINE | ID: mdl-38359558

ABSTRACT

Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are essential. Though the exact roles of defense mechanisms are unidentified, virus-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. Identifying the CMV antigens that trigger these protective immune responses will help us choose the most suitable CMV-related proteins for future vaccines. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets for antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins for their ability to induce specific antibody responses and cytokine production in a mouse model. We observed a significant CMV-antigen-specific antibody response to UL80a/pp38 and UL83/pp65 (E/C>2.0). Mice immunized with UL80a/pp38 had significantly higher concentrations of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, and IL-17A (p<0.05). Mice immunized with UL83/pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Ratios of Th1 to Th2 cytokines revealed a Th1 cytokine bias in mice immunized with UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB. We suggest that stimulation with multiple CMV-related proteins, which include UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future novel vaccines and immune-based therapeutic design.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus Vaccines , Humans , Animals , Mice , Cytomegalovirus , Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-17 , Cytokines , Interleukin-2 , Interleukin-4 , Viral Matrix Proteins , Antigens, Viral , Antibodies, Viral , Phosphoproteins
4.
Microb Genom ; 9(8)2023 08.
Article in English | MEDLINE | ID: mdl-37526642

ABSTRACT

The bacillus Calmette-Guérin (BCG) vaccine has been in use for prevention of tuberculosis for over a century. It remains the only widely available tuberculosis vaccine and its protective efficacy has varied across geographical regions. Since it was developed, the BCG vaccine strain has been shared across different laboratories around the world, where use of differing culture methods has resulted in genetically distinct strains over time. Whilst differing BCG vaccine efficacy around the world is well documented, and the reasons for this may be multifactorial, it has been hypothesized that genetic differences in BCG vaccine strains contribute to this variation. Isolates from an historic archive of lyophilized BCG strains were regrown, DNA was extracted and then whole-genome sequenced using Oxford Nanopore Technologies. The resulting whole-genome data were plotted on a phylogenetic tree and analysed to identify the presence or absence of regions of difference (RDs) and single-nucleotide polymorphisms (SNPs) relating to virulence, growth and cell wall structure. Of 50 strains available, 36 were revived in culture and 39 were sequenced. Morphology differed between the strains distributed before and after 1934. There was phylogenetic association amongst certain geographically classified strains, most notably BCG-Russia, BCG-Japan and BCG-Danish. RD2, RD171 and RD713 deletions were associated with late strains (seeded after 1927). When mapped to BCG-Pasteur 1172, the SNPs in sigK, plaA, mmaA3 and eccC5 were associated with early strains. Whilst BCG-Russia, BCG-Japan and BCG-Danish showed strong geographical isolate clustering, the late strains, including BCG-Pasteur, showed more variation. A wide range of SNPs were seen within geographically classified strains, and as much intra-strain variation as between-strain variation was seen. The date of distribution from the original Pasteur laboratory (early pre-1927 or late post-1927) gave the strongest association with genetic differences in regions of difference and virulence-related SNPs, which agrees with the previous literature.


Subject(s)
Mycobacterium bovis , Tuberculosis , Humans , BCG Vaccine/genetics , Phylogeny , Tuberculosis/prevention & control , Base Sequence
5.
BMC Biotechnol ; 23(1): 26, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37525145

ABSTRACT

Oxford Nanopore sequencing technology (ONT) is currently widely used due to its affordability, simplicity, and reliability. Despite the advantage ONT has over next-generation sequencing in detecting resistance genes in mobile genetic elements, its relatively high error rate (10-15%) is still a deterrent. Several bioinformatic tools are freely available for raw data processing and obtaining complete and more accurate genome assemblies. In this study, we evaluated the impact of using mix-and-matched read assembly (Flye, Canu, Wtdbg2, and NECAT) and read correction (Medaka, NextPolish, and Racon) tools in generating complete and accurate genome assemblies, and downstream genomic analysis of nine clinical Escherichia coli isolates. Flye and Canu assemblers were the most robust in genome assembly, and Medaka and Racon correction tools significantly improved assembly parameters. Flye functioned well in pan-genome analysis, while Medaka increased the number of core genes detected. Flye, Canu, and NECAT assembler functioned well in detecting antimicrobial resistance genes (AMR), while Wtdbg2 required correction tools for better detection. Flye was the best assembler for detecting and locating both virulence and AMR genes (i.e., chromosomal vs. plasmid). This study provides insight into the performance of several read assembly and read correction tools for analyzing ONT sequencing reads for clinical isolates.


Subject(s)
Genomics , Virulence Factors , Virulence Factors/genetics , Reproducibility of Results , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing , Drug Resistance , Sequence Analysis, DNA
6.
Front Microbiol ; 13: 858770, 2022.
Article in English | MEDLINE | ID: mdl-36090111

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been fatal to human health, affecting almost the entire world. Here we reported, for the first time, characterization of the genetic variants of SARS-CoV-2 circulating in Kuwait to understand their genetic diversity and monitor the accumulation of mutations over time. This study randomly enrolled 209 COVID-19 patients whose nasopharyngeal swabs were positive for SARS-CoV-2 between February 2020 and June 2021 using RT-PCR. The whole genomes of SARS-CoV-2 from the nasopharyngeal swabs were sequenced using the Oxford Nanopore sequencing technology following the ARTIC network protocol. Whole-genome sequencing has identified different clades/sub-clades circulating in Kuwait, mimicking the virus's global spread. Clade 20A was dominant from February 2020 until January 2021, and then clade 20I (Alpha, V1) emerged and dominated. In June 2021, the number of cases infected with clades 21I, 21A, and 21 J (Delta) increased and dominated. We detected several known clade-defining missense and synonymous mutations and other missense mutations in the genes encoding important viral proteins, including ORF1a, S, ORF3a, ORF8 regions and a novel mutation in the N region. ORF1ab region harbored more mutations and deletions (n = 62, 49.2%) compared to the other 12 gene regions, and the most prevalent missense mutations were P314L (97%) in ORF1b and D614G (97%) in the S glycoprotein regions. Detecting and analyzing mutations and monitoring the evolution of SARS-CoV-2 over time is essential to help better understand the spread of various clades/strains of SARS-CoV-2 and their implications for pathogenesis. In addition, knowledge of the circulating variants and genome sequence variability of SARS-CoV-2 may potentially influence the development of vaccines and antiviral drugs to control the COVID-19 pandemic.

7.
Pathogens ; 11(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36145416

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was first identified in Wuhan, China, in December 2019. With the global transmission of the virus, many SARS-CoV-2 variants have emerged due to the alterations of the spike glycoprotein. Therefore, the S glycoprotein encoding gene has widely been used for the molecular analysis of SARS-Co-2 due to its features affecting antigenicity and immunogenicity. We analyzed the S gene sequences of 35 SARS-CoV-2 isolates in Kuwait from March 2020 to February 2021 using the Sanger method and MinION nanopore technology to confirm novel nucleotide alterations. Our results show that the Kuwaiti strains from clade 19A and B were the dominant variants early in the pandemic, while clade 20I (Alpha, V1) was the dominant variant from February 2021 onward. Besides the known mutations, 21 nucleotide deletions in the S glycoprotein in one Kuwaiti strain were detected, which might reveal a recombinant SARS-CoV-2 with the defective viral genome (DVG). This study emphasizes the importance of closely perceiving the emerging clades with these mutations during this continuous pandemic as some may influence the specificity of diagnostic tests, such as RT-PCR and even vaccine design directing these positions.

8.
Front Immunol ; 13: 851765, 2022.
Article in English | MEDLINE | ID: mdl-35898494

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), has caused a global crisis. Patients with COVID-19 present with a range of clinical manifestations, from no symptoms to severe illness. However, little is known about the profiles of immune cells required to protect against SARS-CoV-2. This study was performed to determine the immune cells profiles in the peripheral blood of COVID-19 patients with moderate to severe disease (n=52), and compare the findings with those from healthy subjects vaccinated with Pfizer BioNTech mRNA vaccine (VS) (n=62), and non-vaccinated healthy subjects (HS) (n=30) from Kuwait. Absolute counts and percentages of total lymphocytes and lymphocyte subsets (CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD16+CD56+ NK cells) in the peripheral blood of the three groups were analyzed using flow cytometry. The results showed that the absolute counts of total lymphocytes, CD3+, CD4+, and CD8+ T cells, CD19+ B cells, and CD56+ NK cells, were significantly lower in COVID-19 patients than normal healthy controls and vaccinated subjects. The percentages of CD3+ and CD4+ T lymphocytes were also significantly lower in the COVID-19 patients. However, the percentage of CD16+CD56+ NK cells was significantly higher in the peripheral blood of COVID-19 patients, compared to the HS and VS groups with no detectable differences in the percentages of CD8+ T cells and CD19+ B cells between the three groups. Analysis of the monocyte subsets has showed a significantly higher percentage of CD14+HLA-DR+ monocytes in COVID-19 patients compared to HS whereas the inflammatory CD14+CD16+ HLA-DR+ monocytes, and the non-classical CD16+HLA-DR+ monocytes showed significantly lower frequency in the blood of the patients than that of HS. These findings demonstrate perturbations of both innate and adaptive immune cell subsets that reflect dysregulated host responses in COVID-19 patients with moderate to severe disease.


Subject(s)
COVID-19 , COVID-19/prevention & control , HLA-DR Antigens , Healthy Volunteers , Humans , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
9.
Med Princ Pract ; 31(4): 359-367, 2022.
Article in English | MEDLINE | ID: mdl-35584661

ABSTRACT

OBJECTIVE: This study determined the effects of chemical adjuvants, incomplete Freund's adjuvant (IFA) and aluminum hydroxide (Alum), mycobacteria, and a DNA plasmid as delivery systems on the induction of protective Th1 (interferon-gamma (IFN-γ)) and nonprotective Th2 (IL-5) and Treg (IL-10) cytokine responses to Rv3619c and its peptides. Rv3619c is an immunodominant Mycobacterium tuberculosis-specific antigen and belongs to the early-secreted antigenic target of 6 kDa-family of proteins. Delivery systems are needed to deliver such antigens in animal models and induce protective immune responses. METHODS: The rv3619c gene was amplified from the genomic DNA of M. tuberculosis and cloned into appropriate vectors for expression in Escherichia coli, Mycobacterium smegmatis, and eukaryotic cells. Spleen cells from mice immunized with rv3619c using different delivery systems were stimulated in vitro with synthetic peptides (P1 to P6) of Rv3619c, and secreted cytokines were estimated by ELISA. RESULTS: The recombinant M. smegmatis and DNA plasmid induced the secretion of the protective cytokine IFN-γ in response to peptide-pool of Rv3619c and all the individual peptides, whereas rv3619c/IFA induced the secretion of IFN-γ in response to the peptide pool, and the peptides P5 and P6. However, the secretions of the nonprotective cytokines IL-5 and IL-10 were induced to none of the peptides with the delivery systems used. CONCLUSION: Rv3619c is a major antigen of M. tuberculosis with multiple immunogenic epitopes; however, immune responses to individual epitopes can vary based on delivery systems used.


Subject(s)
Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Mycobacterium tuberculosis , Tuberculosis , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Cytokines/metabolism , Epitopes/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-5/metabolism , Mice , Peptides/metabolism , Recombinant Proteins , Th1 Cells/metabolism , Tuberculosis/metabolism , Tuberculosis/prevention & control
10.
Ann Clin Microbiol Antimicrob ; 19(1): 56, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256750

ABSTRACT

At the time of writing, the SARS-CoV-2 virus has infected more than 49 million people causing more than 1.2 million deaths worldwide since its emergence from Wuhan, China in December 2019. Vaccine development against SARS-CoV-2 has drawn the global attention in order to stop the spread of the virus, with more than 10 vaccines being tested in phase III clinical trials, as of November 2020. However, critical to vaccine development is consideration of the immunological response elicited as well as biological features of the vaccine and both need to be evaluated thoroughly. Tuberculosis is also a major infectious respiratory disease of worldwide prevalence and the vaccine development for tuberculosis has been ongoing for decades. In this review, we highlight some of the common features, challenges and complications in tuberculosis vaccine development, which may also be relevant for, and inform, COVID-19 vaccine development.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Tuberculosis Vaccines/immunology , COVID-19/etiology , COVID-19/transmission , COVID-19 Vaccines/adverse effects , Humans
11.
Front Pharmacol ; 11: 532199, 2020.
Article in English | MEDLINE | ID: mdl-33101014

ABSTRACT

Despite significant advances, asthma remains a cause of premature death, and current treatments are suboptimal. Antigen-specific Th2 cells and their cytokines are primary mediators of the pathophysiological changes seen in asthma. Studies in animal models have shown that mycobacteria can suppress the asthma phenotype by alteration of the Th1/Th2 cytokines ratio. In this study, utilizing a Th1 delivery system to modulate the allergic airway inflammation in a Th2-driven model of asthma, we evaluated the efficacy of immunization with Mycobacterium tuberculosis-specific antigen Rv3619c, either alone or in combination with low dose dexamethasone. The rv3619c gene was cloned in an expression plasmid pGES-TH-1, expressed in Escherichia coli, and the recombinant protein Rv3619c was purified to homogeneity using affinity chromatography. Mice were immunized with the recombinant protein emulsified in Freund's Incomplete Adjuvant (IFA) alone and in combination with low dose dexamethasone, and then challenged with ovalbumin (OVA). Airway inflammation was assessed by quantifying airway cytology, histological changes and Th2 cytokine (IL-5) secretion from splenocytes. OVA-specific IgE, IgG and IgG1 from sera was assessed, as well as pERK1/2 expression in the lung tissue. Immunization with recombinant Rv3619c alone inhibited the OVA-induced increase in total cell counts, eosinophil airway cell infiltration in BAL fluid, perivascular and peribronchial inflammation and fibrosis, and goblet cell hyper/metaplasia. In addition, Rv3619c/IFA inhibited the OVA-induced IL-5 in spleen cells, OVA-specific IgE, IgG, and IgG1 levels in sera, and pERK1/2 expression in lung tissue. Immunization with Rv3619c/IFA in combination with low dose dexamethasone resulted in an enhanced effect on some but not all the asthma features. Taken together, this study demonstrates that immunization with Rv3619c/IFA, alone or in combination with dexamethasone, may be an effective treatment strategy for the prevention of asthma.

12.
PLoS One ; 15(2): e0228381, 2020.
Article in English | MEDLINE | ID: mdl-32027660

ABSTRACT

Tuberculosis (TB) is a major health problem of global concern. The control of this disease requires appropriate preventive measures, including vaccines. In TB, T helper (Th)1 cytokines provide protection whereas Th2 and T regulatory (Treg) cytokines contribute to the pathogenesis and Th17 cytokines play a role in both protection and pathogenesis. Previous studies with Mycobacterium tuberculosis-specific proteins have identified seven low molecular weight proteins, PE35, ESXA, ESXB, Rv2346c, Rv2347c, Rv3619c, and Rv3620c, as immunodominant antigens inducing Th1-cell responses in humans following natural infection with M. tuberculosis. The aim of this study was to characterize the cytokine responses induced in mice immunized with these proteins, using various adjuvants and delivery systems, i.e. chemical adjuvants (Alum and IFA), non-pathogenic mycobacteria (M. smegmatis and M. vaccae) and a DNA vaccine plasmid (pUMVC6). The immune responses were monitored by quantifying the marker cytokines secreted by Th1 (IFN-É£), Th2 (IL-5), Treg (IL-10), and Th17 (IL-17A) cells. DNA corresponding to pe35, esxa, esxb, rv2346c, rv2347c, rv3619c, and rv3620c genes were cloned into the expression vectors pGES-TH-1, pDE22 and pUMVC6 for expression in Escherichia coli, mycobacteria and eukaryotic cells, respectively. Mice were immunized with the recombinants using different adjuvants and delivery systems, and spleen cells were stimulated in vitro with peptides of immunizing proteins to investigate antigen-specific secretion of Th1 (IFN-É£), Th2 (IL-5), Treg (IL-10), and Th17 (IL-17A) cytokines. The results showed that spleen cells, from mice immunized with all antigens, secreted the protective Th1 cytokine IFN-É£, except ESXB, with one or more adjuvants and delivery systems. However, only Rv3619c consistently induced Th1-biased responses, without the secretion of significant concentrations of Th2, Th17 and Treg cytokines, with all adjuvants and delivery systems. Rv3619c also induced antigen-specific IgG antibodies in immunized mice.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Bacterial Proteins/immunology , Cytokines/metabolism , Drug Delivery Systems/methods , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Adjuvants, Pharmaceutic/administration & dosage , Animals , Bacterial Proteins/genetics , Cells, Cultured , Female , Immunization/methods , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Tuberculosis/immunology , Tuberculosis/metabolism
13.
Int J Mycobacteriol ; 5 Suppl 1: S84-S85, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28043633

ABSTRACT

OBJECTIVE/BACKGROUND: Mycobacterium tuberculosis is an obligate pathogenic bacterial species in the family Mycobacteriaceae and the causative agent of most tuberculosis (TB) cases. Until today, the only approved TB vaccine is Bacille Calmette Guerin (BCG), which has been used since 1921. While BCG provides fairly effective protection for infants and young children, its efficacy in adults is variable around the world. This could be due to several parameters including strains of the vaccine and exposure of individuals to different environmental bacterial infections. The situation is complicated by the emergence of multidrug resistant strains of M. tuberculosis. This urged the demand to develop new improved vaccines and immunotherapies against TB. Development of nonpathogenic recombinant constructs delivering M. tuberculosis-specific antigenic proteins provides the chance to evaluate candidates to be included in diagnostic tools and preventive vaccines. In our study, we are introducing some of the major M. tuberculosis genes in Escherichia coli and Mycobacterium smegmatis. METHODS: DNA corresponding to the genes Rv3891, Rv3020, Rv0287, Rv3875, Rv3874, Rv3872, Rv2346c, and Rv3619 were PCR-amplified from M. tuberculosis genomic DNA and visualized on gel electrophoresis at the expected DNA size. Products were subsequently ligated to the plasmid pGEMTeasy and used to transform TOP10 E. coli. Transformed colonies were selected on appropriate media. At the second stage, genes-DNA were subcultured in expression vectors pDE22 and pGESTH1; the recombinant plasmids were finally used to transform. M. smegmatis and E. coli, respectively. Expression of proteins in E. coli was confirmed by Western blotting and in M. smegmatis by reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: Amplified genes were successfully cloned and transformed in E. coli and M. smegmatis. Colonies of recombinant bacteria were detected on appropriate media. Western blotting and RT-PCR confirmed the expression of our corresponding proteins in both the bacterial vehicles. CONCLUSION: Positive results of cloning and expression suggest that the constructed clones are ready tools for further assessment of their immunogenicity and can be included in improved diagnostic tools and vaccines against TB.

SELECTION OF CITATIONS
SEARCH DETAIL
...