Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 66(23): 15629-15647, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37967851

ABSTRACT

Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Adult , Humans , Animals , Mice , Cyclin-Dependent Kinases , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Apoptosis , Cell Cycle Checkpoints , Disease Models, Animal , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cyclin-Dependent Kinase 9 , Neoplasms/drug therapy
2.
Cell Chem Biol ; 28(2): 134-147.e14, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33086052

ABSTRACT

Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors. Further optimization resulted in KB-0742, an orally bioavailable, selective CDK9 inhibitor with potent anti-tumor activity in CRPC models. In 22Rv1 cells, KB-0742 rapidly downregulates nascent transcription, preferentially depleting short half-life transcripts and AR-driven oncogenic programs. In vivo, oral administration of KB-0742 significantly reduced tumor growth in CRPC, supporting CDK9 inhibition as a promising therapeutic strategy to target AR dependence in CRPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Kinase Inhibitors/pharmacology , Receptors, Androgen/genetics , Transcription, Genetic/drug effects , Androgen Receptor Antagonists/therapeutic use , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/genetics , Gene Expression Regulation, Neoplastic/drug effects , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Kinase Inhibitors/therapeutic use
3.
Drug Metab Dispos ; 41(1): 238-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23118327

ABSTRACT

Compound 1 [(E)-4-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1S,4S)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], a new, potent, selective anaplastic lymphoma kinase (ALK) inhibitor with potential application for the treatment of cancer, was selected as candidate to advance into efficacy studies in mice. However, the compound underwent mouse-specific enzymatic hydrolysis in plasma to a primary amine product (M1). Subsequent i.v. pharmacokinetics studies in mice showed that compound 1 had high clearance (CL) and a short half-life. Oral dose escalation studies in mice indicated that elimination of compound 1 was saturable, with higher doses achieving sufficient exposures above in vitro IC(50). Chemistry efforts to minimize hydrolysis resulted in the discovery of several analogs that were stable in mouse plasma. Three were taken in vivo into mice and showed decreased CL corresponding to increased in vitro stability in plasma. However, the more stable compounds also showed reduced potency against ALK. Kinetic studies in NADPH-fortified and unfortified microsomes and plasma produced submicromolar K(m) values and could help explain the saturation of elimination observed in vivo. Predictions of CL based on kinetics from hydrolysis and NADPH-dependent pathways produced predicted hepatic CL values of 3.8, 3.0, 1.6, and 1.2 l/h⋅kg for compound 1, compound 2 [(E)-3,5-difluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], compound 3 [(E)-3-chloro-5-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], and compound 4 [(E)-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)-3-(trifluoromethyl)benzamide], respectively. The in vivo observed CLs for compounds 1, 2, 3, and 4 were 5.52, 3.51, 2.14, and 2.66 l/h⋅kg, respectively. These results indicate that in vitro metabolism kinetic data, incorporating contributions from both hydrolysis and NADPH-dependent metabolism, could be used to predict the systemic CL of compounds cleared via hydrolytic pathways provided that the in vitro assays thoroughly investigate the processes, including the contribution of other metabolic pathways and the possibility of saturation kinetics.


Subject(s)
Protein Kinase Inhibitors/pharmacokinetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Anaplastic Lymphoma Kinase , Animals , Area Under Curve , Chromatography, Liquid , Hydrolysis , Inhibitory Concentration 50 , Male , Mice , Protein Kinase Inhibitors/blood , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
4.
J Med Chem ; 55(14): 6523-40, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22734674

ABSTRACT

A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors. Compound 49 achieved substantial tumor regression in an NPM-ALK driven murine tumor xenograft model when dosed qd. Compounds 36 and 49 show favorable potency and PK characteristics in preclinical species indicative of suitability for further development.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Administration, Oral , Anaplastic Lymphoma Kinase , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Biological Availability , Cell Line, Tumor , Drug Stability , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Inhibitory Concentration 50 , Microsomes, Liver/metabolism , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Rats , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL