Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 30(9): 1179-1198.e7, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37683603

ABSTRACT

Osteoarthritis is a degenerative joint disease that causes pain, degradation, and dysfunction. Excessive canonical Wnt signaling in osteoarthritis contributes to chondrocyte phenotypic instability and loss of cartilage homeostasis; however, the regulatory niche is unknown. Using the temporomandibular joint as a model in multiple species, we identify Lgr5-expressing secretory cells as forming a Wnt inhibitory niche that instruct Wnt-inactive chondroprogenitors to form the nascent synovial joint and regulate chondrocyte lineage and identity. Lgr5 ablation or suppression during joint development, aging, or osteoarthritis results in depletion of Wnt-inactive chondroprogenitors and a surge of Wnt-activated, phenotypically unstable chondrocytes with osteoblast-like properties. We recapitulate the cartilage niche and create StemJEL, an injectable hydrogel therapy combining hyaluronic acid and sclerostin. Local delivery of StemJEL to post-traumatic osteoarthritic jaw and knee joints in rabbit, rat, and mini-pig models restores cartilage homeostasis, chondrocyte identity, and joint function. We provide proof of principal that StemJEL preserves the chondrocyte niche and alleviates osteoarthritis.


Subject(s)
Chondrocytes , Osteoarthritis , Swine , Animals , Rabbits , Rats , Swine, Miniature , Cartilage , Aging , Receptors, G-Protein-Coupled
2.
Acta Biomater ; 143: 26-38, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35292413

ABSTRACT

Over the past two decades in situ tissue engineering has emerged as a new approach where biomaterials are used to harness the body's own stem/progenitor cells to regenerate diseased or injured tissue. Immunomodulatory biomaterials are designed to promote a regenerative environment, recruit resident stem cells to diseased or injured tissue sites, and direct them towards tissue regeneration. This review explores advances gathered from in vitro and in vivo studies on in situ tissue regenerative therapies. Here we also examine the different ways this approach has been incorporated into biomaterial sciences in order to create customized biomaterial products for therapeutic applications in a broad spectrum of tissues and diseases. STATEMENT OF SIGNIFICANCE: Biomaterials can be designed to recruit stem cells and coordinate their behavior and function towards the restoration or replacement of damaged or diseased tissues in a process known as in situ tissue regeneration. Advanced biomaterial constructs with precise structure, composition, mechanical, and physical properties can be transplanted to tissue site and exploit local stem cells and their micro-environment to promote tissue regeneration. In the absence of cells, we explore the critical immunomodulatory, chemical and physical properties to consider in material design and choice. The application of biomaterials for in situ tissue regeneration has the potential to address a broad range of injuries and diseases.


Subject(s)
Biocompatible Materials , Tissue Engineering , Biocompatible Materials/pharmacology , Stem Cells , Wound Healing
3.
Drug Metab Rev ; 54(1): 63-94, 2022 02.
Article in English | MEDLINE | ID: mdl-35129408

ABSTRACT

Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are still not fully understood; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss (1) the biological aspects of wound healing and skin regeneration, (2) important characteristics and functions of biomaterials for skin regeneration applications, and (3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.


Subject(s)
Biocompatible Materials , Skin, Artificial , Animals , Humans , Skin , Skin Transplantation , Tissue Engineering , Wound Healing
4.
PLoS One ; 16(8): e0241882, 2021.
Article in English | MEDLINE | ID: mdl-34460818

ABSTRACT

Gold nanoparticles (AuNPs) hold great promise in nanomedicine, yet their successful clinical translation has not been realized. Some challenges include effective AuNP targeting and delivery to improve modulation of immune cells of interest while limiting potential adverse effects. In order to overcome these challenges, we must fully understand how AuNPs impact different immune cell subsets, particularly within the dendritic cell and T cell compartments. Herein, we show that polyethylene glycol coated (PEG) gold nanorods (AuNRs) and PEG AuNRs covered with a thin layer of silver (AuNR/Ag) may enhance the immune response towards immune suppression or activation. We also studied the ability to enhance CD4+ Foxp3+ Tregs in vitro using AuNRs functionalized with interleukin 2 (IL2), a cytokine that is important in Treg development and homeostasis. Our results indicate that AuNRs enhance different immune cells and that NP composition matters in immune targeting. This knowledge will help us understand how to better design AuNRs to target and enhance the immune system.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Forkhead Transcription Factors/metabolism , Gold/pharmacology , Metal Nanoparticles/administration & dosage , Nanotubes/chemistry , Animals , CD4-Positive T-Lymphocytes/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Immune System/drug effects , Immune System/metabolism , Immunity/drug effects , Interleukin-2/metabolism , Mice , Mice, Inbred C57BL , Polyethylene Glycols/chemistry , Silver/administration & dosage
5.
J Appl Toxicol ; 41(9): 1456-1466, 2021 09.
Article in English | MEDLINE | ID: mdl-33417269

ABSTRACT

The use of synthetic materials for biomedical applications is ever expanding. One of the major requirements for these materials is biocompatibility, which includes prevention of immune system responses. Due to the inherent complexity of their structural composition, the polyurethane (PU) family of polymers is being used in a variety of medical applications, from soft and hard tissue scaffolds to intricate coatings on implantable devices. Herein, we investigated whether two polymer materials, D3 and D7, induced an immune response, measured by their effects on a dendritic cell (DC) line, JAWS II. Using a lactate dehydrogenase cytotoxicity assay and Annexin V/PI staining, we found that the PU materials did not induce cytotoxicity in DC cells. Using confocal microscopy, we also showed that the materials did not induce activation or maturation, as compared to positive controls. This was confirmed by looking at various markers, CD80, CD86, MHC class I, and MHC class II, via flow cytometry. Overall, the results indicated that the investigated PU films are biocompatible in terms of immunotoxicology and immunogenicity and show great promise for use in regenerative medicine.


Subject(s)
Biocompatible Materials , Dendritic Cells/drug effects , Dendritic Cells/immunology , Materials Testing/methods , Polyurethanes/pharmacology , Animals , Bone Marrow Cells/drug effects , Cell Survival/drug effects , Ethers , Mice , Mice, Inbred C57BL , Nanostructures/toxicity , Regenerative Medicine , Tissue Engineering , Tissue Scaffolds
6.
PLoS One ; 15(5): e0232670, 2020.
Article in English | MEDLINE | ID: mdl-32421748

ABSTRACT

Complex skin wounds have always been a significant health and economic problem worldwide due to their elusive and sometimes poor or non-healing conditions. If not well-treated, such wounds may lead to amputation, infections, cancer, or even death. Thus, there is a need to efficiently generate multifunctional skin grafts that address a wide range of skin conditions, including non-healing wounds, and enable the regeneration of new skin tissue. Here, we propose studying pristine graphene and two of its oxygen-functionalized derivatives-high and low-oxygen graphene films-as potential substrates for skin cell proliferation and differentiation. Using BJ cells (human foreskin-derived fibroblasts) to represent basic skin cells, we show that the changes in surface properties of pristine graphene due to oxygen functionalization do not seem to statistically impact the normal proliferation and maturation of skin cells. Our results indicate that the pristine and oxidized graphenes presented relatively low cytotoxicity to BJ fibroblasts and, in fact, support their growth and bioactivity. Therefore, these graphene films could potentially be integrated into more complex skin regenerative systems to support skin regeneration. Because graphene's surface can be relatively easily functionalized with various chemical groups, this finding presents a major opportunity for the development of various composite materials that can act as active components in regenerative applications such as skin regeneration.


Subject(s)
Fibroblasts/cytology , Graphite/chemistry , Tissue Scaffolds/chemistry , Cell Line , Cell Proliferation , Cell Survival , Humans , Surface Properties , Tissue Engineering
7.
Sci Rep ; 7(1): 5513, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710434

ABSTRACT

Dendritic cells (DCs) can acquire, process, and present antigens to T-cells to induce an immune response. For this reason, targeting cancer antigens to DCs in order to cause an immune response against cancer is an emerging area of nanomedicine that has the potential to redefine the way certain cancers are treated. The use of plasmonically active silver-coated gold nanorods (henceforth referred to as plasmonic nano vectors (PNVs)) as potential carriers for DC tumor vaccines has not been presented before. Effective carriers must be able to be phagocytized by DCs, present low toxicity, and induce the maturation of DCs-an early indication of an immune response. When we treated DCs with the PNVs, we found that the cell viability of DCs was unaffected, up to 200 µg/ml. Additionally, the PNVs associated with the DCs as they were phagocytized and they were found to reside within intracellular compartments such as endosomes. More importantly, the PNVs were able to induce expression of surface markers indicative of DC activation and maturation, i.e. CD40, CD86, and MHC class II. These results provide the first evidence that PNVs are promising carriers for DC-based vaccines and warrant further investigating for clinical use.


Subject(s)
B7-2 Antigen/metabolism , CD40 Antigens/metabolism , Dendritic Cells/immunology , Gold/pharmacology , Histocompatibility Antigens Class II/pharmacology , Silver/pharmacology , Animals , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Dendritic Cells/cytology , Dendritic Cells/drug effects , Metal Nanoparticles/chemistry , Mice , Nanotubes/chemistry , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...