Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(3): 648-667, 2023 02.
Article in English | MEDLINE | ID: mdl-36278894

ABSTRACT

Anthropogenic climate change is resulting in spatial redistributions of many species. We assessed the potential effects of climate change on an abundant and widely distributed group of diving birds, Eudyptes penguins, which are the main avian consumers in the Southern Ocean in terms of biomass consumption. Despite their abundance, several of these species have undergone population declines over the past century, potentially due to changing oceanography and prey availability over the important winter months. We used light-based geolocation tracking data for 485 individuals deployed between 2006 and 2020 across 10 of the major breeding locations for five taxa of Eudyptes penguins. We used boosted regression tree modelling to quantify post-moult habitat preference for southern rockhopper (E. chrysocome), eastern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under two climate change scenarios, representative concentration pathways RCP4.5 and RCP8.5 (for the end of the century, 2071-2100). As climate forcings differ regionally, we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific and East Pacific regions. We found sea surface temperature and sea surface height to be the most important predictors of current habitat for these penguins; physical features that are changing rapidly in the Southern Ocean. Our results indicated that the less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The five taxa of penguin may experience a general poleward redistribution of their preferred habitat, but with contrasting effects in the (i) change in total area of preferred habitat under climate change (ii) according to geographic region and (iii) the species (macaroni/royal vs. rockhopper populations). Our results provide further understanding on the regional impacts and vulnerability of species to climate change.


Subject(s)
Spheniscidae , Humans , Animals , Plant Breeding , Ecosystem , Forecasting , Climate Change , Oceans and Seas
2.
PLoS One ; 17(2): e0262901, 2022.
Article in English | MEDLINE | ID: mdl-35139102

ABSTRACT

Mechanisms promoting coexistence between closely related species are fundamental for maintaining species diversity. Mechanisms of niche differentiation include allochrony which offsets the peak timing of resource utilisation between species. Many studies focus on spatial and temporal niche partitioning during the breeding season, few have investigated the role allochrony plays in influencing interspecific segregation of foraging distribution and ecology between congeneric species during the non-breeding season. We investigated the non-breeding migrations of Snares (Eudyptes robustus) and Fiordland penguins (Eudyptes pachyrhynchus), closely related species breeding between 100-350 km apart whose migration phenology differs by two months. Using light geolocation tracking, we examined the degree of overlap given the observed allochrony and a hypothetical scenario where the species commence migration simultaneously. We found that Fiordland penguins migrated to the Sub-Antarctic Frontal Zone and Polar Frontal Zone in the austral autumn whereas Snares penguins disperse westwards staying north of the Sub-Tropical Front in the austral winter. Our results suggest that allochrony is likely to be at the root of segregation because the relative profitability of the different water masses that the penguins forage in changes seasonally which results in the two species utilising different areas over their core non-breeding periods. Furthermore, allochrony reduces relatively higher levels of spatiotemporal overlap during the departure and arrival periods, when the close proximity of the two species' colonies would cause the birds to congregate in similar areas, resulting in high interspecific competition just before the breeding season. Available evidence from other studies suggests that the shift in phenology between these species has arisen from adaptive radiation and phenological matching to the seasonality of local resource availability during the breeding season and reduced competitive overlap over the non-breeding season is likely to be an incidental outcome.


Subject(s)
Spheniscidae , Animals
3.
Glob Chang Biol ; 27(22): 5773-5785, 2021 11.
Article in English | MEDLINE | ID: mdl-34386992

ABSTRACT

Ocean circulation connects geographically distinct ecosystems across a wide range of spatial and temporal scales via exchanges of physical and biogeochemical properties. Remote oceanographic processes can be especially important for ecosystems in the Southern Ocean, where the Antarctic Circumpolar Current transports properties across ocean basins through both advection and mixing. Recent tracking studies have indicated the existence of two large-scale, open ocean habitats in the Southern Ocean used by grey petrels (Procellaria cinerea) from two populations (i.e., Kerguelen and Antipodes islands) during their nonbreeding season for extended periods during austral summer (i.e., October to February). In this work, we use a novel combination of large-scale oceanographic observations, surface drifter data, satellite-derived primary productivity, numerical adjoint sensitivity experiments, and output from a biogeochemical state estimate to examine local and remote influences on these grey petrel habitats. Our aim is to understand the oceanographic features that control these isolated foraging areas and to evaluate their ecological value as oligotrophic open ocean habitats. We estimate the minimum local primary productivity required to support these populations to be much <1% of the estimated local primary productivity. The region in the southeast Indian Ocean used by the birds from Kerguelen is connected by circulation to the productive Kerguelen shelf. In contrast, the region in the south-central Pacific Ocean used by seabirds from the Antipodes is relatively isolated suggesting it is more influenced by local factors or the cumulative effects of many seasonal cycles. This work exemplifies the potential use of predator distributions and oceanographic data to highlight areas of the open ocean that may be more dynamic and productive than previously thought. Our results highlight the need to consider advective connections between ecosystems in the Southern Ocean and to re-evaluate the ecological relevance of oligotrophic Southern Ocean regions from a conservation perspective.


Subject(s)
Birds , Ecosystem , Animals , Antarctic Regions , Indian Ocean , Seasons
4.
J Exp Biol ; 223(Pt 23)2020 12 02.
Article in English | MEDLINE | ID: mdl-33268565

ABSTRACT

Understanding the environmental and behavioral factors that influence how organisms maintain energy balance can inform us about their potential resiliency to rapid environmental changes. Flexibility in maintaining energy balance is particularly important to long-lived, central-place foraging seabirds that are constrained when locating food for offspring in a dynamic ocean environment. To understand the role of environmental interactions, behavioral flexibility and morphological constraints on energy balance, we used doubly labeled water to measure the at-sea daily energy expenditure (DEE) of two sympatrically breeding seabirds, Campbell (Thalassarche impavida) and grey-headed (Thalassarchechrysostoma) albatrosses. We found that species and sexes had similar foraging costs, but DEE varied between years for both species and sexes during early chick rearing in two consecutive seasons. For both species, greater DEE was positively associated with larger proportional mass gain, lower mean wind speeds during water take-offs, greater proportions of strong tailwinds (>12 m s-1), and younger chick age. Greater proportional mass gains were marginally more costly in male albatrosses that already have higher wing loading. DEE was higher during flights with a greater proportion of strong headwinds for grey-headed albatrosses only. Poleward winds are forecasted to intensify over the next century, which may increase DEE for grey-headed albatrosses that heavily use this region during early chick rearing. Female Campbell albatrosses may be negatively affected by forecasted slackening winds at lower latitudes due to an expected greater reliance on less energy efficient sit-and-wait foraging strategies. Behavioral plasticity associated with environmental variation may influence future population responses to climate change of both species.


Subject(s)
Birds , Wind , Animals , Female , Male , Seasons , Sympatry , Wings, Animal
5.
PLoS One ; 10(3): e0120014, 2015.
Article in English | MEDLINE | ID: mdl-25748948

ABSTRACT

Species distribution models (SDMs) are increasingly applied in conservation management to predict suitable habitat for poorly known populations. High predictive performance of SDMs is evident in validations performed within the model calibration area (interpolation), but few studies have assessed SDM transferability to novel areas (extrapolation), particularly across large spatial scales or pelagic ecosystems. We performed rigorous SDM validation tests on distribution data from three populations of a long-ranging marine predator, the grey petrel Procellaria cinerea, to assess model transferability across the Southern Hemisphere (25-65°S). Oceanographic data were combined with tracks of grey petrels from two remote sub-Antarctic islands (Antipodes and Kerguelen) using boosted regression trees to generate three SDMs: one for each island population, and a combined model. The predictive performance of these models was assessed using withheld tracking data from within the model calibration areas (interpolation), and from a third population, Marion Island (extrapolation). Predictive performance was assessed using k-fold cross validation and point biserial correlation. The two population-specific SDMs included the same predictor variables and suggested birds responded to the same broad-scale oceanographic influences. However, all model validation tests, including of the combined model, determined strong interpolation but weak extrapolation capabilities. These results indicate that habitat use reflects both its availability and bird preferences, such that the realized distribution patterns differ for each population. The spatial predictions by the three SDMs were compared with tracking data and fishing effort to demonstrate the conservation pitfalls of extrapolating SDMs outside calibration regions. This exercise revealed that SDM predictions would have led to an underestimate of overlap with fishing effort and potentially misinformed bycatch mitigation efforts. Although SDMs can elucidate potential distribution patterns relative to large-scale climatic and oceanographic conditions, knowledge of local habitat availability and preferences is necessary to understand and successfully predict region-specific realized distribution patterns.


Subject(s)
Birds/physiology , Ecosystem , Models, Biological , Predatory Behavior/physiology , Animals , Oceans and Seas
6.
Nat Commun ; 2: 332, 2011.
Article in English | MEDLINE | ID: mdl-21629265

ABSTRACT

Pelagic seabirds are highly mobile, reducing the likelihood of allopatric speciation where disruption of gene flow between populations is caused by physically insurmountable, extrinsic barriers. Spatial segregation during the non-breeding season appears to provide an intrinsic barrier to gene flow among seabird populations that otherwise occupy nearby or overlapping regions during breeding, but how this is achieved remains unclear. Here we show that the two genetically distinct populations of Cook's petrel (Pterodroma cookii) exhibit transequatorial separation of non-breeding ranges at contemporary (ca. 2-3 yrs) and historical (ca. 100 yrs) time scales. Segregation during the non-breeding season per se appears as an unlikely barrier to gene flow. Instead we provide evidence that habitat specialization during the non-breeding season is associated with breeding asynchrony which, in conjunction with philopatry, restricts gene flow. Habitat specialization during breeding and non-breeding likely promotes evolutionary divergence between these two populations via local adaptation.


Subject(s)
Animal Migration , Birds/genetics , Genetic Variation , Adaptation, Physiological , Animals , Birds/physiology , Breeding , Gene Flow , Molecular Sequence Data , Seasons , Social Isolation
7.
PLoS One ; 5(6): e10960, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20532034

ABSTRACT

BACKGROUND: Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.


Subject(s)
Birds/physiology , Predatory Behavior , Wind , Animals , Biodiversity , Ecology , Marine Biology , Oceans and Seas
8.
Proc Natl Acad Sci U S A ; 103(34): 12799-802, 2006 Aug 22.
Article in English | MEDLINE | ID: mdl-16908846

ABSTRACT

Electronic tracking tags have revolutionized our understanding of broad-scale movements and habitat use of highly mobile marine animals, but a large gap in our knowledge still remains for a wide range of small species. Here, we report the extraordinary transequatorial postbreeding migrations of a small seabird, the sooty shearwater, obtained with miniature archival tags that log data for estimating position, dive depth, and ambient temperature. Tracks (262+/-23 days) reveal that shearwaters fly across the entire Pacific Ocean in a figure-eight pattern while traveling 64,037+/-9,779 km roundtrip, the longest animal migration ever recorded electronically. Each shearwater made a prolonged stopover in one of three discrete regions off Japan, Alaska, or California before returning to New Zealand through a relatively narrow corridor in the central Pacific Ocean. Transit rates as high as 910+/-186 km.day-1 were recorded, and shearwaters accessed prey resources in both the Northern and Southern Hemisphere's most productive waters from the surface to 68.2 m depth. Our results indicate that sooty shearwaters integrate oceanic resources throughout the Pacific Basin on a yearly scale. Sooty shearwater populations today are declining, and because they operate on a global scale, they may serve as an important indicator of climate change and ocean health.


Subject(s)
Animal Migration/physiology , Birds/physiology , Seasons , Animal Identification Systems , Animals , Pacific Ocean , Rain
9.
Mol Ecol ; 15(1): 73-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16367831

ABSTRACT

Genetic variability in the only two existing populations of Buller's albatross (Thalassarche bulleri bulleri) was assessed using six polymorphic microsatellite loci. Large biological samples were obtained from both the Snares (n = 99) and the Solander Islands (n = 27). Several measures of genetic differentiation including F(ST) and R(ST) and a principal coordinates analysis (PCO) suggest a complete absence of genetic structure between three breeding colonies on the Snares Islands, and between them and one breeding colony on the Solander Islands. Mark/recapture studies of recently banded albatross chicks on the Snares found high natal philopatry in T. b. bulleri, but the microsatellite DNA data suggest that sufficient gene flow still occurs between all four breeding colonies to maintain a genetically homogeneous population overall.


Subject(s)
Birds/physiology , Genetic Variation , Genetics, Population , Homing Behavior/physiology , Animals , Birds/genetics , DNA Primers , Gene Frequency , Microsatellite Repeats/genetics , New Zealand , Principal Component Analysis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...