Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Investig Med High Impact Case Rep ; 12: 23247096231220467, 2024.
Article in English | MEDLINE | ID: mdl-38164897

ABSTRACT

Achromobacter xylosoxidans is a gram-negative bacterium that is responsible for rare peritonitis associated with peritoneal dialysis (PD). We present a case of a 64-year-old woman with a medical history of end-stage renal disease undergoing PD who was admitted to the emergency department with abdominal pain and nausea. Physical examination and laboratory studies revealed peritoneal signs and laboratory abnormalities consistent with peritonitis. Intraperitoneal catheter dysfunction was identified and subsequently resolved via laparoscopy. Following a peritoneal fluid culture, A xylosoxidans was identified, leading to the initiation of intraperitoneal meropenem treatment. After an initial improvement, the patient developed an ileus and recurrent abdominal symptoms, and further peritoneal cultures remained positive for A xylosoxidans. Subsequent treatment included intravenous meropenem and vancomycin for Clostridium difficile colitis. Owing to the high likelihood of biofilm formation on the PD catheter by A xylosoxidans, the catheter was removed, and the patient transitioned to hemodialysis. Intravenous meropenem was continued for 2 weeks post-catheter removal. This case highlights the challenges in managing recurrent peritonitis in PD patients caused by multidrug-resistant A xylosoxidans. A high index of suspicion, appropriate microbiological identification, and targeted intraperitoneal and systemic antibiotic treatment, along with catheter management, are crucial in achieving a favorable outcome in such cases.


Subject(s)
Achromobacter denitrificans , Peritoneal Dialysis , Peritonitis , Female , Humans , Middle Aged , Meropenem , Peritoneal Dialysis/adverse effects , Peritonitis/etiology , Peritonitis/microbiology , Anti-Bacterial Agents/therapeutic use
2.
Cureus ; 14(10): e30797, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36447677

ABSTRACT

Icodextrin solutions are associated with rashes within a few weeks of initial exposure. However, severe skin reactions are rarely reported. Cessation of icodextrin is necessary for treatment, though systemic steroids were used in a few cases. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a severe drug reaction characterized by an extensive rash associated with eosinophilia, visceral organ involvement, lymphadenopathy, or atypical lymphocytosis. Recurrence can develop weeks to months after drug cessation, even without re-exposure. To our knowledge, DRESS has not been reported with icodextrin use. Herein, we report a case of relapsing generalized maculopapular skin rash that developed with icodextrin use, highly suggestive of DRESS syndrome.

3.
Am J Physiol Heart Circ Physiol ; 313(1): H200-H206, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28411232

ABSTRACT

Experimental studies have suggested that Wingless-related integration site 5A (WNT5A) is a proinflammatory secreted protein that is associated with metabolic dysfunction in obesity. Impaired angiogenesis in fat depots has been implicated in the development of adipose tissue capillary rarefaction, hypoxia, inflammation, and metabolic dysfunction. We have recently demonstrated that impaired adipose tissue angiogenesis is associated with overexpression of antiangiogenic factor VEGF-A165b in human fat and the systemic circulation. In the present study, we postulated that upregulation of WNT5A is associated with angiogenic dysfunction and examined its role in regulating VEGF-A165b expression in human obesity. We biopsied subcutaneous and visceral adipose tissue from 38 obese individuals (body mass index: 44 ± 7 kg/m2, age: 37 ± 11 yr) during planned bariatric surgery and characterized depot-specific protein expression of VEGF-A165b and WNT5A using Western blot analysis. In both subcutaneous and visceral fat, VEGF-A165b expression correlated strongly with WNT5A protein (r = 0.9, P < 0.001). In subcutaneous adipose tissue where angiogenic capacity is greater than in the visceral depot, exogenous human recombinant WNT5A increased VEGF-A165b expression in both whole adipose tissue and isolated vascular endothelial cell fractions (P < 0.01 and P < 0.05, respectively). This was associated with markedly blunted angiogenic capillary sprout formation in human fat pad explants. Moreover, recombinant WNT5A increased secretion of soluble fms-like tyrosine kinase-1, a negative regulator of angiogenesis, in the sprout media (P < 0.01). Both VEGF-A165b-neutralizing antibody and secreted frizzled-related protein 5, which acts as a decoy receptor for WNT5A, significantly improved capillary sprout formation and reduced soluble fms-like tyrosine kinase-1 production (P < 0.05). We demonstrated a significant regulatory nexus between WNT5A and antiangiogenic VEGF-A165b in the adipose tissue of obese subjects that was linked to angiogenic dysfunction. Elevated WNT5A expression in obesity may function as a negative regulator of angiogenesis.NEW & NOTEWORTHY Wingless-related integration site 5a (WNT5A) negatively regulates adipose tissue angiogenesis via VEGF-A165b in human obesity.


Subject(s)
Adipose Tissue/blood supply , Adipose Tissue/physiopathology , Angiogenesis Inhibitors/metabolism , Neovascularization, Pathologic/physiopathology , Obesity/physiopathology , Wnt-5a Protein/metabolism , Adult , Female , Humans , Male , Transcriptome , Vascular Endothelial Growth Factor A/metabolism
4.
Vasc Med ; 21(6): 489-496, 2016 12.
Article in English | MEDLINE | ID: mdl-27688298

ABSTRACT

Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease.


Subject(s)
Adiposity , Arterioles/drug effects , Endothelium, Vascular/drug effects , Insulin Resistance , Insulin/pharmacology , Intra-Abdominal Fat/blood supply , JNK Mitogen-Activated Protein Kinases/metabolism , Obesity/enzymology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Wnt Signaling Pathway/drug effects , Wnt-5a Protein/metabolism , Adolescent , Adult , Arterioles/enzymology , Arterioles/physiopathology , Case-Control Studies , Cells, Cultured , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiopathology , Female , Humans , In Vitro Techniques , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Male , Middle Aged , Nitric Oxide Synthase Type III/metabolism , Obesity/physiopathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL