Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 24(5): e13960, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676702

ABSTRACT

There is growing interest in uncovering genetic kinship patterns in past societies using low-coverage palaeogenomes. Here, we benchmark four tools for kinship estimation with such data: lcMLkin, NgsRelate, KIN, and READ, which differ in their input, IBD estimation methods, and statistical approaches. We used pedigree and ancient genome sequence simulations to evaluate these tools when only a limited number (1 to 50 K, with minor allele frequency ≥0.01) of shared SNPs are available. The performance of all four tools was comparable using ≥20 K SNPs. We found that first-degree related pairs can be accurately classified even with 1 K SNPs, with 85% F1 scores using READ and 96% using NgsRelate or lcMLkin. Distinguishing third-degree relatives from unrelated pairs or second-degree relatives was also possible with high accuracy (F1 > 90%) with 5 K SNPs using NgsRelate and lcMLkin, while READ and KIN showed lower success (69 and 79% respectively). Meanwhile, noise in population allele frequencies and inbreeding (first-cousin mating) led to deviations in kinship coefficients, with different sensitivities across tools. We conclude that using multiple tools in parallel might be an effective approach to achieve robust estimates on ultra-low-coverage genomes.


Subject(s)
Benchmarking , Pedigree , Polymorphism, Single Nucleotide , Benchmarking/methods , Humans , Gene Frequency , DNA, Ancient/analysis , Computer Simulation , Genetics, Population/methods , Computational Biology/methods
2.
Sci Adv ; 8(44): eabo3609, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36332018

ABSTRACT

Upper Mesopotamia played a key role in the Neolithic Transition in Southwest Asia through marked innovations in symbolism, technology, and diet. We present 13 ancient genomes (c. 8500 to 7500 cal BCE) from Pre-Pottery Neolithic Çayönü in the Tigris basin together with bioarchaeological and material culture data. Our findings reveal that Çayönü was a genetically diverse population, carrying mixed ancestry from western and eastern Fertile Crescent, and that the community received immigrants. Our results further suggest that the community was organized along biological family lines. We document bodily interventions such as head shaping and cauterization among the individuals examined, reflecting Çayönü's cultural ingenuity. Last, we identify Upper Mesopotamia as the likely source of eastern gene flow into Neolithic Anatolia, in line with material culture evidence. We hypothesize that Upper Mesopotamia's cultural dynamism during the Neolithic Transition was the product not only of its fertile lands but also of its interregional demographic connections.

3.
Open Res Eur ; 2: 100, 2022.
Article in English | MEDLINE | ID: mdl-37829208

ABSTRACT

A major challenge in zooarchaeology is to morphologically distinguish closely related species' remains, especially using small bone fragments. Shotgun sequencing aDNA from archeological remains and comparative alignment to the candidate species' reference genomes will only apply when reference nuclear genomes of comparable quality are available, and may still fail when coverages are low. Here, we propose an alternative method, MTaxi, that uses highly accessible mitochondrial DNA (mtDNA) to distinguish between pairs of closely related species from ancient DNA sequences. MTaxi utilises mtDNA transversion-type substitutions between pairs of candidate species, assigns reads to either species, and performs a binomial test to determine the sample taxon. We tested MTaxi on sheep/goat and horse/donkey data, between which zooarchaeological classification can be challenging in ways that epitomise our case. The method performed efficiently on simulated ancient genomes down to 0.3x mitochondrial coverage for both sheep/goat and horse/donkey, with no false positives. Trials on n=18 ancient sheep/goat samples and n=10 horse/donkey samples of known species identity also yielded 100% accuracy. Overall, MTaxi provides a straightforward approach to classify closely related species that are difficult to distinguish through zooarchaeological methods using low coverage aDNA data, especially when similar quality reference genomes are unavailable. MTaxi is freely available at https://github.com/goztag/MTaxi.

4.
Commun Biol ; 4(1): 1279, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34773064

ABSTRACT

Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic.


Subject(s)
DNA, Ancient/analysis , DNA, Mitochondrial/analysis , Domestication , Polymorphism, Genetic , Sheep, Domestic/genetics , Animals , Archaeology , Cell Nucleus , Demography , Turkey
5.
Curr Biol ; 31(17): 3925-3934.e8, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34216555

ABSTRACT

The history of human inbreeding is controversial.1 In particular, how the development of sedentary and/or agricultural societies may have influenced overall inbreeding levels, relative to those of hunter-gatherer communities, is unclear.2-5 Here, we present an approach for reliable estimation of runs of homozygosity (ROHs) in genomes with ≥3× mean sequence coverage across >1 million SNPs and apply this to 411 ancient Eurasian genomes from the last 15,000 years.5-34 We show that the frequency of inbreeding, as measured by ROHs, has decreased over time. The strongest effect is associated with the Neolithic transition, but the trend has since continued, indicating a population size effect on inbreeding prevalence. We further show that most inbreeding in our historical sample can be attributed to small population size instead of consanguinity. Cases of high consanguinity were rare and only observed among members of farming societies in our sample. Despite the lack of evidence for common consanguinity in our ancient sample, consanguineous traditions are today prevalent in various modern-day Eurasian societies,1,35-37 suggesting that such practices may have become widespread within the last few millennia.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Consanguinity , Homozygote , Humans
6.
Curr Biol ; 31(11): 2455-2468.e18, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33857427

ABSTRACT

The social organization of the first fully sedentary societies that emerged during the Neolithic period in Southwest Asia remains enigmatic,1 mainly because material culture studies provide limited insight into this issue. However, because Neolithic Anatolian communities often buried their dead beneath domestic buildings,2 household composition and social structure can be studied through these human remains. Here, we describe genetic relatedness among co-burials associated with domestic buildings in Neolithic Anatolia using 59 ancient genomes, including 22 new genomes from Asikli Höyük and Çatalhöyük. We infer pedigree relationships by simultaneously analyzing multiple types of information, including autosomal and X chromosome kinship coefficients, maternal markers, and radiocarbon dating. In two early Neolithic villages dating to the 9th and 8th millennia BCE, Asikli Höyük and Boncuklu, we discover that siblings and parent-offspring pairings were frequent within domestic structures, which provides the first direct indication of close genetic relationships among co-burials. In contrast, in the 7th millennium BCE sites of Çatalhöyük and Barcin, where we study subadults interred within and around houses, we find close genetic relatives to be rare. Hence, genetic relatedness may not have played a major role in the choice of burial location at these latter two sites, at least for subadults. This supports the hypothesis that in Çatalhöyük,3-5 and possibly in some other Neolithic communities, domestic structures may have served as burial location for social units incorporating biologically unrelated individuals. Our results underscore the diversity of kin structures in Neolithic communities during this important phase of sociocultural development.


Subject(s)
Archaeology , Social Structure , History, Ancient , Humans , Pedigree , Turkey
7.
Nature ; 591(7849): 265-269, 2021 03.
Article in English | MEDLINE | ID: mdl-33597750

ABSTRACT

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Subject(s)
DNA, Ancient/analysis , Evolution, Molecular , Genome, Mitochondrial/genetics , Genomics , Mammoths/genetics , Phylogeny , Acclimatization/genetics , Alleles , Animals , Bayes Theorem , DNA, Ancient/isolation & purification , Elephants/genetics , Europe , Female , Fossils , Genetic Variation/genetics , Markov Chains , Molar , North America , Radiometric Dating , Siberia , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...