Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Cytotherapy ; 26(4): 325-333, 2024 04.
Article in English | MEDLINE | ID: mdl-38349311

ABSTRACT

BACKGROUND AIMS: Several anti-mesothelin (MSLN) chimeric antigen receptor (CAR) T cells are in phase 1/2 clinical trials to treat solid-organ malignancies. The effect of MSLN antigen density on MSLN CAR cytotoxicity against tumor cells has not been examined previously, nor are there data regarding the effect of agents that increase MSLN antigen density on anti-MSLN CAR T cell efficacy. METHODS: MSLN antigen density was measured on a panel of pancreatic cancer and mesothelioma cell lines by flow cytometry. In parallel, the cytotoxicity and specificity of two anti-MSLN CAR T cells (m912 and SS1) were compared against these cell lines using a real-time impedance-based assay. The effect of two MSLN 'sheddase' inhibitors (lanabecestat and TMI-1) that increase MSLN surface expression was also tested in combination with CAR T cells. RESULTS: SS1 CAR T cells were more cytotoxic compared with m912 CAR T cells against cell lines that expressed fewer than ∼170 000 MSLN molecules/cell. A comparison of the m912 and amatuximab (humanized SS1) antibodies identified that amatuximab could detect and bind to lower levels of MSLN on pancreatic cancer and mesothelioma cell lines, suggesting that superior antibody/scFv affinity was the reason for the SS1 CAR's superior cytotoxicity. The cytotoxicity of m912 CAR T cells was improved in the presence of sheddase inhibitors, which increased MSLN antigen density. CONCLUSIONS: These data highlight the value of assessing CAR constructs against a panel of cells expressing varying degrees of target tumor antigen as occurs in human tumors. Furthermore, the problem of low antigen density may be overcome by concomitant administration of drugs that inhibit enzymatic shedding of MSLN.


Subject(s)
Mesothelioma , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Humans , Cell Line, Tumor , Immunotherapy, Adoptive , Mesothelin , Mesothelioma/therapy , Mesothelioma/pathology , Pancreatic Neoplasms/therapy , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism
2.
Cancer Cell Int ; 23(1): 327, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105188

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have revolutionized the treatment of CD19- and B-cell maturation antigen-positive haematological malignancies. However, the effect of a CAR construct on the function of T-cells stimulated via their endogenous T-cell receptors (TCRs) has yet to be comprehensively investigated. METHODS: Experiments were performed to systematically assess TCR signalling and function in CAR T-cells using anti-mesothelin human CAR T-cells as a model system. CAR T-cells expressing the CD28 or 4-1BB costimulatory endodomains were manufactured and compared to both untransduced T-cells and CAR T-cells with a non-functional endodomain. These cell products were treated with staphylococcal enterotoxin B to stimulate the TCR, and in vitro functional assays were performed by flow cytometry. RESULTS: Increased proliferation, CD69 expression and IFNγ production were identified in CD8+ 4-1BBζ CAR T-cells compared to control untransduced CD8+ T-cells. These functional differences were associated with higher levels of phosphorylated ZAP70 after stimulation. In addition, these functional differences were associated with a differing immunophenotype, with a more than two-fold increase in central memory cells in CD8+ 4-1BBζ CAR T-cell products. CONCLUSION: Our data indicate that the 4-1BBζ CAR enhances CD8+ TCR-mediated function. This could be beneficial if the TCR targets epitopes on malignant tissues or infectious agents, but detrimental if the TCR targets autoantigens.

3.
Pharmacol Res ; 182: 106329, 2022 08.
Article in English | MEDLINE | ID: mdl-35772645

ABSTRACT

Cellular therapies utilizing T cells expressing chimeric antigen receptors (CARs) have garnered significant interest due to their clinical success in hematological malignancies. Unfortunately, this success has not been replicated in solid tumors, with only a small fraction of patients achieving complete responses. A number of obstacles to effective CAR-T cell therapy in solid tumors have been identified including tumor antigen heterogeneity, poor T cell fitness and persistence, inefficient trafficking and inability to penetrate into the tumor, immune-related adverse events due to on-target/off-tumor toxicity, and the immunosuppressive tumor microenvironment. Many preclinical studies have focused on improvements to CAR design to try to overcome some of these hurdles. However, a growing body of work has also focused on the use of local and/or regional delivery of CAR-T cells as a means to overcome poor T cell trafficking and inefficient T cell penetration into tumors. Most trials that incorporate locoregional delivery of CAR-T cells have targeted tumors of the central nervous system - repurposing an Ommaya/Rickham reservoir for repeated delivery of cells directly to the tumor cavity or ventricles. Hepatic artery infusion is another technique used for locoregional delivery to hepatic tumors. Locoregional delivery theoretically permits increased numbers of CAR-T cells within the tumor while reducing the risk of immune-related systemic toxicity. Studies to date have been almost exclusively phase I. The growing body of evidence indicates that locoregional delivery of CAR-T cells is both safe and feasible. This review focuses specifically on the use of locoregional delivery of CAR-T cells in clinical trials.


Subject(s)
Liver Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasms/pathology , T-Lymphocytes , Tumor Microenvironment
4.
Cancer Cell ; 37(3): 354-370.e7, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32183951

ABSTRACT

Immunotherapy has emerged as a powerful new chapter in the fight against cancer. However, it has yet to reach its full potential due in part to the complexity of the cancer immune response. We demonstrate that tumor-targeting EDV nanocells function as an immunotherapeutic by delivering a cytotoxin in conjunction with activation of the immune system. These nanocells polarize M1 macrophages and activate NK cells concurrently producing a Th1 cytokine response resulting in potent antitumor function. Dendritic cell maturation and antigen presentation follows, which generates tumor-specific CD8+ T cells, conferring prolonged tumor remission. The combination of cytotoxin delivery and activation of innate and adaptive antitumor immune responses results in a potent cyto-immunotherapeutic with potential in clinical oncology.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Immunity, Innate/drug effects , Salmonella typhimurium/cytology , Adult , Aged , Animals , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line , Dendritic Cells/drug effects , Dendritic Cells/physiology , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , ErbB Receptors/administration & dosage , ErbB Receptors/metabolism , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Immunotherapy/methods , Male , Mice , Mice, Inbred BALB C , Nanostructures/chemistry , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology
5.
J Med Chem ; 63(5): 2181-2193, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31347843

ABSTRACT

Medulloblastoma is a malignant brain tumor diagnosed in children. Chemotherapy has improved survival rates to approximately 70%; however, children are often left with long-term treatment side effects. New therapies that maintain a high cure rate while reducing off-target toxicity are required. We describe for the first time the use of a bacteriophage-peptide display library to identify heptapeptides that bind to medulloblastoma cells. Two heptapeptides that demonstrated high [E1-3 (1)] or low [E1-7 (2)] medulloblastoma cell binding affinity were synthesized. The potential of the peptides to deliver a therapeutic drug to medulloblastoma cells with specificity was investigated by conjugating E1-3 (1) or E1-7 (2) to doxorubicin (5). Both peptide-drug conjugates were cytotoxic to medulloblastoma cells. E1-3 doxorubicin (3) could permeabilize an in vitro blood-brain barrier and showed a marked reduction in cytotoxicity compared to free doxorubicin (5) in nontumor cells. This study provides proof-of-concept for developing peptide-drug conjugates to inhibit medulloblastoma cell growth while minimizing off-target toxicity.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Doxorubicin/administration & dosage , Drug Carriers/metabolism , Medulloblastoma/drug therapy , Oligopeptides/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Child , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Medulloblastoma/metabolism , Oligopeptides/chemistry , Peptide Library
6.
Mol Cancer Ther ; 17(5): 1012-1023, 2018 05.
Article in English | MEDLINE | ID: mdl-29491149

ABSTRACT

Advanced stage neuroblastoma is an aggressive disease with limited treatment options for patients with drug-resistant tumors. Targeted delivery of chemotherapy for pediatric cancers offers promise to improve treatment efficacy and reduce toxicity associated with systemic chemotherapy. The EnGeneIC Dream Vector (EDVTM) is a nanocell, which can package chemotherapeutic drugs and target tumors via attachment of bispecific proteins to the surface of the nanocell. Phase I trials in adults with refractory tumors have shown an acceptable safety profile. Herein we investigated the activity of EGFR-targeted and doxorubicin-loaded EDVTM (EGFREDVTMDox) for the treatment of neuroblastoma. Two independent neuroblastoma cell lines with variable expression of EGFR protein [SK-N-BE(2), high; SH-SY-5Y, low] were used. EGFREDVTMDox induced apoptosis in these cells compared to control, doxorubicin, or non-doxorubicin loaded EGFREDVTM In three-dimensional tumor spheroids, imaging and fluorescence life-time microscopy revealed that EGFREDVTMDox had a marked enhancement of doxorubicin penetration compared to doxorubicin alone, and improved penetration compared to non-EGFR-targeted EDVTMDox, with enhanced spheroid penetration leading to increased apoptosis. In two independent orthotopic human neuroblastoma xenograft models, short-term studies (28 days) of tumor-bearing mice led to a significant decrease in tumor size in EGFREDVTMDox-treated animals compared to control, doxorubicin, or non-EGFR EDVTMDox There was increased TUNEL staining of tumors at day 28 compared to control, doxorubicin, or non-EGFR EDVTMDox Moreover, overall survival was increased in neuroblastoma mice treated with EGFREDVTMDox (P < 0007) compared to control. Drug-loaded bispecific-antibody targeted EDVsTM offer a highly promising approach for the treatment of aggressive pediatric malignancies such as neuroblastoma. Mol Cancer Ther; 17(5); 1012-23. ©2018 AACR.


Subject(s)
Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Neuroblastoma/drug therapy , Xenograft Model Antitumor Assays , Animals , Antibiotics, Antineoplastic/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Male , Mice, SCID , Neuroblastoma/metabolism , Neuroblastoma/pathology
7.
Chempluschem ; 82(3): 383-389, 2017 Mar.
Article in English | MEDLINE | ID: mdl-31962021

ABSTRACT

Two peptide-derived low-molecular-weight gelators bearing different capping groups, 9-fluorenylmethyloxycarbonyl (Fmoc) and phenothiazine, were synthesized and their gel networks were characterized. The variation of the N-terminal capping group affects the viability of these hydrogels as a three-dimensional cell culture for multicellular tumor spheroids. These results indicate that the phenothiazine capping group is a more biocompatible alternative to the widely used Fmoc moiety.

8.
Biomacromolecules ; 17(7): 2337-51, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27305597

ABSTRACT

Pancreatic cancer is a devastating disease with a dismal prognosis. Short-interfering RNA (siRNA)-based therapeutics hold promise for the treatment of cancer. However, development of efficient and safe delivery vehicles for siRNA remains a challenge. Here, we describe the synthesis and physicochemical characterization of star polymers (star 1, star 2, star 3) using reversible addition-fragmentation chain transfer polymerization (RAFT) for the delivery of siRNA to pancreatic cancer cells. These star polymers were designed to contain different lengths of cationic poly(dimethylaminoethyl methacrylate) (PDMAEMA) side-arms and varied amounts of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA). We showed that star-POEGMA polymers could readily self-assemble with siRNA to form nanoparticles. The star-POEGMA polymers were nontoxic to normal cells and delivered siRNA with high efficiency to pancreatic cancer cells to silence a gene (TUBB3/ßIII-tubulin) which is currently undruggable using chemical agents, and is involved in regulating tumor growth and metastases. Notably, systemic administration of star-POEGMA-siRNA resulted in high accumulation of siRNA to orthotopic pancreatic tumors in mice and silenced ßIII-tubulin expression by 80% at the gene and protein levels in pancreatic tumors. Together, these novel findings provide strong rationale for the use of star-POEGMA polymers as delivery vehicles for siRNA to pancreatic tumors.


Subject(s)
Drug Delivery Systems , Nanoparticles/administration & dosage , Pancreatic Neoplasms/drug therapy , Polymers/chemistry , RNA, Small Interfering/genetics , Tubulin/chemistry , Animals , Cell Survival/drug effects , Humans , Methacrylates/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/chemistry , Nylons/chemistry , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA, Small Interfering/administration & dosage , Tubulin/genetics , Tubulin/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Biomater Sci ; 3(2): 323-35, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26218123

ABSTRACT

Previously synthesized poly(methacrylic acid-co-cholesteryl methacrylate) P(MAA-co-CMA) copolymers were examined as potential drug delivery vehicles. P(MAA-co-CMA) copolymers were fluorescently labelled and imaged in SHEP and HepG2 cells. To understand their cell internalization pathway endocytic inhibition studies were conducted. It was concluded that P(MAA-co-CMA) are taken up by the cells via clathrin-independent endocytosis (CIE) (both caveolae mediated and cholesterol dependent endocytosis) mechanisms. The formation and characterization of P(MAA-co-CMA)-doxorubicin (DOX) nanocomplexes was investigated by fluorescence lifetime imaging microscopy (FLIM), UV-Visible spectroscopy (UV-Vis) and dynamic light scattering (DLS) studies. The toxicity screening between P(MAA-co-CMA)-DOX nanocomplexes (at varying w/w ratios) and free DOX, revealed nanocomplexes to exhibit higher cytotoxicity towards cancer cells in comparison to normal cells. FLIM and confocal microscopy were employed for investigating the time-dependent release of DOX in SHEP cells and the cellular uptake profile of P(MAA-co-CMA)-DOX nanocomplexes in cancer and normal cell lines, respectively. The endocytic pathway of P(MAA-co-CMA)-DOX nanocomplexes were examined in SHEP and HepG2 cells via flow cytometry revealing the complexes to be internalized through both clathrin-dependent (CDE) and CIE mechanisms. The drug delivery profile, reported herein, illuminates the specific endocytic route and therapeutic efficiency of P(MAA-co-CMA)-DOX nanocomplexes strongly suggesting these particles to be promising candidates for in vivo applications.


Subject(s)
Cholesterol Esters/chemistry , Cholesterol/chemistry , Doxorubicin/chemistry , Endocytosis/drug effects , Nanoparticles/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Cholesterol Esters/pharmacology , Doxorubicin/pharmacology , Drug Delivery Systems , Hep G2 Cells , Humans , Photoelectron Spectroscopy , Polymethacrylic Acids/pharmacology
11.
Oncotarget ; 6(14): 12020-34, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25557168

ABSTRACT

Non-small cell lung cancer (NSCLC) remains the most common cause of cancer death worldwide due its resistance to chemotherapy and aggressive tumor growth. Polo-like kinase 1 (PLK1) is a serine-threonine protein kinase which is overexpressed in cancer cells, and plays a major role in regulating tumor growth. A number of PLK1 inhibitors are in clinical trial; however, poor tumor bioavailability and off-target effects limit their efficacy. Short-interfering-RNA (siRNA) holds promise as a class of therapeutics, which can selectively silence disease-causing genes. However, siRNA cannot enter cells without a delivery vehicle. Herein, we investigated whether RNAi-interfering nanoparticles could deliver siRNA to NSCLC cells and silence PLK1 expression in vitro and in vivo. iNOP-7 was non-toxic, and delivered siRNA with high efficiency to NSCLC cells. iNOP-7-PLK1 siRNA silenced PLK1 expression and reduced NSCLC growth in vitro. Notably, iNOP-7 delivered siRNA to orthotopic lung tumors in mice, and administration of iNOP-7-PLK1 siRNA reduced lung tumor burden. These novel data show that iNOP-7 can deliver siRNA against PLK1 to NSCLC cells, and decrease cell proliferation both in vitro and in vivo. iNOP-7-PLK1 siRNA may provide a novel therapeutic strategy for the treatment of NSCLC as well as other cancers which aberrantly express this gene.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Cell Cycle Proteins/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , RNA Interference/immunology , RNA, Small Interfering/genetics , Animals , Cell Proliferation , Humans , Mice , Nanoparticles , Transfection , Polo-Like Kinase 1
12.
Cancer Res ; 75(2): 415-25, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25414139

ABSTRACT

ßIII-tubulin (encoded by TUBB3) expression is associated with therapeutic resistance and aggressive disease in non-small cell lung cancer (NSCLC), but the basis for its pathogenic influence is not understood. Functional and differential proteomics revealed that ßIII-tubulin regulates expression of proteins associated with malignant growth and metastases. In particular, the adhesion-associated tumor suppressor maspin was differentially regulated by ßIII-tubulin. Functionally, ßIII-tubulin suppression altered cell morphology, reduced tumor spheroid outgrowth, and increased sensitivity to anoikis. Mechanistically, the PTEN/AKT signaling axis was defined as a critical pathway regulated by ßIII-tubulin in NSCLC cells. ßIII-Tubulin blockage in vivo reduced tumor incidence and growth. Overall, our findings revealed how ßIII-tubulin influences tumor growth in NSCLC, defining new biologic functions and mechanism of action of ßIII-tubulin in tumorigenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tubulin/metabolism , Animals , Anoikis/physiology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Movement/physiology , Heterografts , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Serpins/biosynthesis , Signal Transduction , Spheroids, Cellular
13.
Nanomedicine ; 10(6): 1131-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24823644

ABSTRACT

Despite improvements in our understanding of cancer and the concept of personalised medicine, cancer is still a major cause of death. It is established that solid tumours are highly heterogeneous, with a complex tumour microenvironment. Indeed, the tumour microenvironment is made up of a collection of immune cells, cancer-activated fibroblasts, and endothelial cells and in some cases a dense extracellular matrix. Accumulating evidence shows that the tumour microenvironment is a major barrier for the effective delivery of therapeutic drugs to tumour cells. Importantly, nanotechnology has come to the forefront as highly effective delivery vehicles for therapeutic agents. This perspective will discuss how nanomedicine can be used to target and deliver therapeutic drugs specifically to tumour cells. Moreover, emerging opportunities to modulate the tumour microenvironment and increase the delivery and efficacy of chemotherapy agents to solid tumours will be highlighted. FROM THE CLINICAL EDITOR: Improving drug delivery to treatment resistant tumors is a major target of many nanomedicine-based applications. This comprehensive review discusses the currently available and emerging opportunities, in addition to discussing tumor microenvironment modulation to facilitate efficient delivery.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Neoplasms/drug therapy , Animals , Humans , Nanomedicine/methods , Tumor Microenvironment/drug effects
14.
Biomater Sci ; 2(1): 121-130, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-32481814

ABSTRACT

A silica-based mesoporous nanosphere (MSN) controlled-release drug delivery system has been synthesized and characterized. The system uses l-cysteine derivatized gold nanoparticles (AuNPs), bound to the MSNs using Cu2+ as a bridging ion. The AuNPs serve as removable caps that hinder the release of drug molecules inside the amino functionalized MSN mesoporous framework. The modified MSNs themselves exhibit negligible cytotoxicity to living cells, as revealed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The drug delivery system requires one of two biological stimuli to trigger drug release. These stimuli are either: low pH (pH < 5); or elevated levels of adenosine triphosphate (ATP) (concentration > 4 mM). The feasibility of biologically controlled release was demonstrated through the stimuli-induced removal of the AuNP caps over the MSN releasing the anticancer drug doxorubicin. We envisage that this MSN system could play a significant role in developing new generations of controlled-release delivery vehicles.

15.
Biomacromolecules ; 15(1): 262-75, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24313925

ABSTRACT

Drug delivery systems with improved tumor penetration are valuable assets as anticancer agents. A dextran-based nanocarrier system with aldehyde functionalities capable of forming an acid labile linkage with the chemotherapy drug doxorubicin was developed. Aldehyde dextran nanocarriers (ald-dex-dox) demonstrated efficacy as delivery vehicles with an IC50 of ∼300 nM against two-dimensional (2D) SK-N-BE(2) monolayers. Confocal imaging showed that the ald-dex-dox nanocarriers were rapidly internalized by SK-N-BE(2) cells. Fluorescence lifetime imaging microscopy (FLIM) analysis indicated that ald-dex-dox particles were internalized as intact complexes with the majority of the doxorubicin released from the particle four hours post uptake. Accumulation of the ald-dex-dox particles was significantly enhanced by ∼30% in the absence of glucose indicating a role for glucose and its receptors in their endocytosis. However, inhibition of clathrin dependent and independent endocytosis and macropinocytosis as well as membrane cholesterol depletion had no effect on ald-dex-dox particle accumulation. In three-dimensional (3D) SK-N-BE(2) tumor spheroids, which more closely resemble a solid tumor, the ald-dex-dox nanoparticles showed a significant improvement in efficacy over free doxorubicin, as evidenced by decreased spheroid outgrowth. Drug penetration studies in 3D demonstrated the ability of the ald-dex-dox nanocarriers to fully penetrate into a SK-N-BE(2) tumor spheroids, while doxorubicin only penetrates to a maximum distance of 50 µM. The ald-dex-dox nanocarriers represent a promising therapeutic delivery system for the treatment of solid tumors due to their unique enhanced penetration ability combined with their improved efficacy over the parent drug in 3D.


Subject(s)
Antineoplastic Agents/administration & dosage , Dextrans/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Endocytosis/drug effects , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dextrans/metabolism , Doxorubicin/metabolism , Drug Carriers/metabolism , Endocytosis/physiology , Humans
16.
Biomacromolecules ; 14(11): 4135-49, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24125032

ABSTRACT

A library of cholesterol-derived ionic copolymers were previously synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization as 'smart' gene delivery vehicles that hold diverse surface charges. Polyplex systems formed with anionic poly(methacrylic acid-co-cholesteryl methacrylate) (P(MAA-co-CMA)) and cationic poly(dimethylamino ethyl methacrylate-co-cholesteryl methacrylate) (Q-P(DMAEMA-co-CMA)) copolymer series were evaluated for their therapeutic efficiency. Cell viability assays, conducted on SHEP, HepG2, H460, and MRC5 cell lines, revealed that alterations in the copolymer composition (CMA mol %) affected the cytotoxicity profile. Increasing the number of cholesterol moieties in Q-P(DMAEMA-co-CMA) copolymers reduced the overall toxicity (in H460 and HepG2 cells) while P(MAA-co-CMA) series displayed no significant toxicity regardless of the CMA content. Agarose gel electrophoresis was employed to investigate the formation of stable polyplexes and determine their complete conjugation ratios. P(MAA-co-CMA) copolymer series were conjugated to DNA through a cationic linker, oligolysine, while Q-P(DMAEMA-co-CMA)-siRNA complexes were readily formed via electrostatic interactions at conjugation ratios beginning from 6:1:1 (oligolysine-P(MAA-co-CMA)-DNA) and 20:1 (Q-P(DMAEMA-co-CMA)-siRNA), respectively. The hydrodynamic diameter, ζ potential and complex stability of the polyplexes were evaluated in accordance to complexation ratios and copolymer composition by dynamic light scattering (DLS). The therapeutic efficiency of the conjugates was assessed in SHEP cells via transfection and imaging assays using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. DNA transfection studies revealed P(MAA-co-CMA)-oligolysine-DNA ternary complexes to be ineffective transfection vehicles that mostly adhere to the cell surface as opposed to internalizing and partaking in endosomal disrupting activity. The transfection efficiency of Q-P(DMAEMA-co-CMA)-GFP siRNA complexes were found to be polymer composition and N/P ratio dependent, with Q-2% CMA-GFP siRNA polyplexes at N/P ratio 20:1 showing the highest gene suppression in GFP expressing SHEP cells. Cellular internalization studies suggested that Q-P(DMAEMA-co-CMA)-siRNA conjugates efficiently escaped the endolysosomal pathway and released siRNA into the cytoplasm. The gene delivery profile, reported herein, illuminates the positive and negative attributes of each therapeutic design and strongly suggests Q-P(DMAEMA-co-CMA)-siRNA particles are extremely promising candidates for in vivo applications of siRNA therapy.


Subject(s)
Cholesterol/chemistry , DNA/administration & dosage , Polymers/chemistry , RNA, Small Interfering/administration & dosage , Transfection/methods , Cell Survival/drug effects , Cells, Cultured , Cholesterol/administration & dosage , Cholesterol/pharmacology , Cholesterol/toxicity , Cholesterol Esters/administration & dosage , Cholesterol Esters/chemistry , Cholesterol Esters/toxicity , Dose-Response Relationship, Drug , Genetic Therapy/methods , Hep G2 Cells , Humans , Ions/administration & dosage , Ions/chemistry , Ions/pharmacology , Ions/toxicity , Methacrylates/administration & dosage , Methacrylates/chemistry , Methacrylates/toxicity , Models, Molecular , Molecular Structure , Particle Size , Polymers/administration & dosage , Polymers/toxicity , Polymethacrylic Acids/administration & dosage , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/toxicity , Structure-Activity Relationship , Surface Properties
17.
Mol Pharm ; 10(6): 2435-44, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23611705

ABSTRACT

Cancer is one of the most common causes of death worldwide. Two types of cancer that have high mortality rates are pancreatic and lung cancer. Despite improvements in treatment strategies, resistance to chemotherapy and the presence of metastases are common. Therefore, novel therapies which target and silence genes involved in regulating these processes are required. Short-interfering RNA (siRNA) holds great promise as a therapeutic to silence disease-causing genes. However, siRNA requires a delivery vehicle to enter the cell to allow it to silence its target gene. Herein, we report on the design and synthesis of cationic star polymers as novel delivery vehicles for siRNA to silence genes in pancreatic and lung cancer cells. Dimethylaminoethyl methacrylate (DMAEMA) was polymerized via reversible addition-fragmentation transfer polymerization (RAFT) and then chain extended in the presence of both cross-linkers N,N-bis(acryloyl)cistamine and DMAEMA, yielding biodegradable well-defined star polymers. The star polymers were characterized by transmission electron microscopy, dynamic light scattering, ζ potential, and gel permeation chromatography. Importantly, the star polymers were able to self-assemble with siRNA and form small uniform nanoparticle complexes. Moreover, the ratios of star polymer required to complex siRNA were nontoxic in both pancreatic and lung cancer cells. Treatment with star polymer-siRNA complexes resulted in uptake of siRNA into both cell lines and a significant decrease in target gene mRNA and protein levels. In addition, delivery of clinically relevant amounts of siRNA complexed to the star polymer were able to silence target gene expression by 50% in an in vivo tumor setting. Collectively, these results provide the first evidence of well-defined small cationic star polymers to deliver active siRNA to both pancreatic and lung cancer cells and may be a valuable tool to inhibit key genes involved in promoting chemotherapy drug resistance and metastases.


Subject(s)
Polymers/chemistry , RNA, Small Interfering/administration & dosage , Animals , Blotting, Western , Cell Line, Tumor , Chromatography, Gel , Female , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred BALB C , Mice, Nude , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Reverse Transcriptase Polymerase Chain Reaction
18.
Mol Pharm ; 9(11): 3046-61, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23078353

ABSTRACT

Conferring biodegradability to nanoparticles is vitally important when nanomedicine applications are being targeted, as this prevents potential problems with bioaccumulation of byproducts after delivery. In this work, dextran has been modified (and rendered hydrophobic) by partial acetalation. A solid state NMR method was first developed to fully characterize the acetalated polymers. In a subsequent synthetic step, RAFT functionality was attached via residual unmodified hydroxyl groups. The RAFT groups were then used in a living free radical polymerization reaction to control the growth of hydrophilic PEG-methacrylate chains, thereby generating amphiphilic comblike polymers. The amphiphilic polymers were then self-assembled in water to form various morphologies, including small vesicles, wormlike rods, and micellar structures, with PEG at the periphery acting as a nonfouling biocompatible polymer layer. The acetalated dextran nanoparticles were designed for potential doxorubicin (DOX) delivery application based on the premise that in the cell compartments (endosome, lysozome) the acetalated dextran would hydrolyze, destroying the nanoparticle structure, releasing the encapsulated DOX. In-vitro studies confirmed minimal cytotoxicity of the (unloaded) nanoparticles, even after 3 days, proving that the hydrolysis products from the acetal groups (methanol and acetone) had no observable cytotoxic effect. An intriguing initial result is reported that in vitro studies of DOX-loaded dextran-nanoparticles (compared to free DOX) revealed an increased differential toxicity toward a cancer cell line when compared to a normal cell line. Efficient accumulation of DOX in a human neuroblastoma cell line (SY-5Y) was confirmed by both confocal microscopy and flow cytometry measurements. Furthermore, the time dependent release of DOX was monitored using fluorescence lifetime imaging microscopy (FLIM) in SY-5Y live cells. FLIM revealed bimodal lifetime distributions, showing the accumulation of both DOX-loaded dextran-nanoparticles and subsequent release of DOX in the living cells. From FLIM data analysis, the amount of DOX released in SY-5Y cells was found to increase from 35% to 55% when the incubation time increased from 3 h to 24 h.


Subject(s)
Dextrans/chemistry , Doxorubicin/pharmacology , Drug Carriers , Drug Delivery Systems , Fibroblasts/cytology , Nanoparticles , Neuroblastoma/pathology , Polymers/chemistry , Antibiotics, Antineoplastic/pharmacology , Cells, Cultured , Fibroblasts/drug effects , Flow Cytometry , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Electron, Transmission , Neuroblastoma/drug therapy
19.
J Colloid Interface Sci ; 385(1): 87-95, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22854262

ABSTRACT

The solid state and lyotropic phase behavior of a series of nonionic diethanolamide amphiphiles with increasing saturated hydrocarbon chain length (lauroyl, myristoyl, palmitoyl, and stearoyl) has been examined. All four saturated diethanolamide amphiphiles form a crystalline solid with two or three different polymorphic crystalline forms at room temperature. Melting points and associated enthalpies for these four amphiphiles increased with increasing chain length. Approximate partial binary phase diagrams have been constructed for each amphiphile/water system by combining Cross-Polarized Optical Microscopy (POM) and Small-Angle X-ray Scattering (SAXS) results. In the presence of water, all four diethanolamides form an L(α) phase, between 10% and 50% water content, and an L(2) phase with decreasing hydration and increasing temperature. In addition to the L(α) and L(2) phases, the shorter chain diethanolamide amphiphiles (lauroyl and myristoyl) also display a normal micellar phase (L(1)) at higher water contents, occurring to lower temperatures than the L(α) phase. By examining the effect of subtle molecular changes on both neat and lyotropic phase behavior, amphiphiles can be designed with properties tailored to a desired application.

20.
Phys Chem Chem Phys ; 13(39): 17511-20, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21909506

ABSTRACT

The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 °C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 Å following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L(2) phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L(α)) at room temperature and up to ∼ 40 °C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q(II)(D)) and gyroid (Q(II)(G)) bicontinuous cubic phases in addition to an L(α) phase.


Subject(s)
Ethanolamines/chemistry , Liquid Crystals/chemistry , Terpenes/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Structure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL