Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Cell Cycle ; 23(2): 115-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38341866

ABSTRACT

Humans have two Type IA topoisomerases, topoisomerase IIIα (TOP3A) and topoisomerase IIIß (TOP3B). In this review, we focus on the role of human TOP3A in DNA replication and highlight the recent progress made in understanding TOP3A in the context of replication. Like other topoisomerases, TOP3A acts by a reversible mechanism of cleavage and rejoining of DNA strands allowing changes in DNA topology. By cleaving and resealing single-stranded DNA, it generates TOP3A-linked single-strand breaks as TOP3A cleavage complexes (TOP3Accs) with a TOP3A molecule covalently bound to the 5´-end of the break. TOP3A is critical for both mitochondrial and for nuclear DNA replication. Here, we discuss the formation and repair of irreversible TOP3Accs, as their presence compromises genome integrity as they form TOP3A DNA-protein crosslinks (TOP3A-DPCs) associated with DNA breaks. We discuss the redundant pathways that repair TOP3A-DPCs, and how their defects are a source of DNA damage leading to neurological diseases and mitochondrial disorders.


Subject(s)
DNA Repair , DNA Replication , DNA Topoisomerases, Type I , Humans , DNA Topoisomerases, Type I/metabolism , Animals
3.
Nat Commun ; 14(1): 7524, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980342

ABSTRACT

TOP3B is stabilized by TDRD3. Hypothesizing that TDRD3 recruits a deubiquitinase, we find that TOP3B interacts with USP9X via TDRD3. Inactivation of USP9X destabilizes TOP3B, and depletion of both TDRD3 and USP9X does not promote further TOP3B ubiquitylation. Additionally, we observe that MIB1 mediates the ubiquitylation and proteasomal degradation of TOP3B by directly interacting with TOP3B independently of TDRD3. Combined depletion of USP9X, TDRD3 and MIB1 causes no additional increase in TOP3B levels compared to MIB1 knockdown alone indicating that the TDRD3-USP9X complex works downstream of MIB1. To comprehend why cells degrade TOP3B in the absence of TDRD3, we measured TOP3Bccs. Lack of TDRD3 increases TOP3Bccs in DNA and RNA, and induced R-loops, γH2AX and growth defect. Biochemical experiments confirm that TDRD3 increases the turnover of TOP3B. Our work provides molecular insights into the mechanisms by which TDRD3 protect cells from deleterious TOP3Bccs which are otherwise removed by TRIM41.


Subject(s)
Ubiquitin Thiolesterase , Cell Line, Tumor , Ubiquitination , Ubiquitin Thiolesterase/metabolism
4.
EMBO Mol Med ; 15(8): e17313, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37491889

ABSTRACT

Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Neoplasm Recurrence, Local , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Ataxia Telangiectasia Mutated Proteins/metabolism
5.
Nat Commun ; 14(1): 1925, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024461

ABSTRACT

Topoisomerase IIIα (TOP3A) belongs to the conserved Type IA family of DNA topoisomerases. Here we report that human TOP3A is associated with DNA replication forks and that a "self-trapping" TOP3A mutant (TOP3A-R364W) generates cellular TOP3A DNA cleavage complexes (TOP3Accs). We show that trapped TOP3Accs that interfere with replication, induce DNA damage and genome instability. To elucidate how TOP3Accs are repaired, we explored the role of Spartan (SPRTN), the metalloprotease associated with DNA replication, which digests proteins forming DNA-protein crosslinks (DPCs). We find that SPRTN-deficient cells show elevated TOP3Accs, whereas overexpression of SPRTN lowers cellular TOP3Accs. SPRTN is deubiquitinated and epistatic with TDP2 in response to TOP3Accs. In addition, we found that MRE11 can excise TOP3Accs, and that cell cycle determines the preference for the SPRTN-TDP2 vs. the ATM-MRE11 pathways, in S vs. G2, respectively. Our study highlights the prevalence of TOP3Accs repair mechanisms to ensure normal DNA replication.


Subject(s)
DNA Topoisomerases, Type I , DNA-Binding Proteins , Humans , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Damage , Genomic Instability , Protein Binding , DNA Repair/genetics , DNA Replication , Phosphoric Diester Hydrolases/metabolism
6.
NAR Genom Bioinform ; 4(3): lqac065, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36110898

ABSTRACT

The Comet or single-cell gel electrophoresis assay is a highly sensitive method to measure cellular, nuclear genome damage. However, low throughput can limit its application for large-scale studies. To overcome these limitations, a 96-well CometChip platform was recently developed that increases throughput and reduces variation due to simultaneous processing and automated analysis of 96 samples. To advance throughput further, we developed a 384-well CometChip platform that allows analysis of ∼100 cells per well. The 384-well CometChip extends the capacity by 4-fold as compared to the 96-well system, enhancing application for larger DNA damage analysis studies. The overall sensitivity of the 384-well CometChip is consistent with that of the 96-well system, sensitive to genotoxin exposure and to loss of DNA repair capacity. We then applied the 384-well platform to screen a library of protein kinase inhibitors to probe each as enhancers of etoposide induced DNA damage. Here, we found that 3-methyladenine significantly increased levels of etoposide-induced DNA damage. Our results suggest that a 384-well CometChip is useful for large-scale DNA damage analyses, which may have increased potential in the evaluation of chemotherapy efficacy, compound library screens, population-based analyses of genome damage and evaluating the impact of environmental genotoxins on genome integrity.

7.
Cell Rep ; 40(2): 111067, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35830799

ABSTRACT

The present study demonstrates how TOP3B is involved in resolving R-loops. We observed elevated R-loops in TOP3B knockout cells (TOP3BKO), which are suppressed by TOP3B transfection. R-loop-inducing agents, the topoisomerase I inhibitor camptothecin, and the splicing inhibitor pladienolide-B also induce higher R-loops in TOP3BKO cells. Camptothecin- and pladienolide-B-induced R-loops are concurrent with the induction of TOP3B cleavage complexes (TOP3Bccs). RNA/DNA hybrid IP-western blotting show that TOP3B is physically associated with R-loops. Biochemical assays using recombinant TOP3B and oligonucleotides mimicking R-loops show that TOP3B cleaves the single-stranded DNA displaced by the R-loop RNA-DNA duplex. IP-mass spectrometry and IP-western experiments reveal that TOP3B interacts with the R-loop helicase DDX5 independently of TDRD3. Finally, we demonstrate that DDX5 and TOP3B are epistatic in resolving R-loops in a pathway parallel with senataxin. We propose a decatenation model for R-loop resolution by TOP3B-DDX5 protecting cells from R-loop-induced damage.


Subject(s)
DNA Topoisomerases, Type I , R-Loop Structures , Camptothecin/pharmacology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA/metabolism , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , RNA/metabolism
8.
Mol Cancer Ther ; 21(7): 1090-1102, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35439320

ABSTRACT

Exatecan and deruxtecan are antineoplastic camptothecin derivatives in development as tumor-targeted-delivery warheads in various formulations including peptides, liposomes, polyethylene glycol nanoparticles, and antibody-drug conjugates. Here, we report the molecular pharmacology of exatecan compared with the clinically approved topoisomerase I (TOP1) inhibitors and preclinical models for validating biomarkers and the combination of exatecan with ataxia telangiectasia and Rad3-related kinase (ATR) inhibitors. Modeling exatecan binding at the interface of a TOP1 cleavage complex suggests two novel molecular interactions with the flanking DNA base and the TOP1 residue N352, in addition to the three known interactions of camptothecins with the TOP1 residues R364, D533, and N722. Accordingly, exatecan showed much stronger TOP1 trapping, higher DNA damage, and apoptotic cell death than the classical TOP1 inhibitors used clinically. We demonstrate the value of SLFN11 expression and homologous recombination (HR) deficiency (HRD) as predictive biomarkers of response to exatecan. We also show that exatecan kills cancer cells synergistically with the clinical ATR inhibitor ceralasertib (AZD6738). To establish the translational potential of this combination, we tested CBX-12, a clinically developed pH-sensitive peptide-exatecan conjugate that selectively targets cancer cells and is currently in clinical trials. The combination of CBX-12 with ceralasertib significantly suppressed tumor growth in mouse xenografts. Collectively, our results demonstrate the potency of exatecan as a TOP1 inhibitor and its clinical potential in combination with ATR inhibitors, using SLFN11 and HRD as predictive biomarkers.


Subject(s)
DNA Topoisomerases, Type I , Neoplasms , Topoisomerase I Inhibitors , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Camptothecin/analogs & derivatives , DNA/metabolism , DNA Topoisomerases, Type I/metabolism , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Topoisomerase I Inhibitors/pharmacology
9.
Nucleic Acids Res ; 49(18): 10493-10506, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34551432

ABSTRACT

The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.


Subject(s)
DNA Repair , DNA-Binding Proteins/metabolism , DNA/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Cell Line , Chickens , DNA Replication/drug effects , DNA-Binding Proteins/genetics , Humans , Phthalazines/toxicity , Poly(ADP-ribose) Polymerase Inhibitors/toxicity
10.
Mol Cancer Ther ; 20(8): 1431-1441, 2021 08.
Article in English | MEDLINE | ID: mdl-34045232

ABSTRACT

Although several ATR inhibitors are in development, there are unresolved questions regarding their differential potency, molecular signatures of patients with cancer for predicting activity, and most effective therapeutic combinations. Here, we elucidate how to improve ATR-based chemotherapy with the newly developed ATR inhibitor, M4344 using in vitro and in vivo models. The potency of M4344 was compared with the clinically developed ATR inhibitors BAY1895344, berzosertib, and ceralasertib. The anticancer activity of M4344 was investigated as monotherapy and combination with clinical DNA damaging agents in multiple cancer cell lines, patient-derived tumor organoids, and mouse xenograft models. We also elucidated the anticancer mechanisms and potential biomarkers for M4344. We demonstrate that M4344 is highly potent among the clinically developed ATR inhibitors. Replication stress (RepStress) and neuroendocrine (NE) gene expression signatures are significantly associated with a response to M4344 treatment. M4344 kills cancer cells by inducing cellular catastrophe and DNA damage. M4344 is highly synergistic with a broad range of DNA-targeting anticancer agents. It significantly synergizes with topotecan and irinotecan in patient-derived tumor organoids and xenograft models. Taken together, M4344 is a promising and highly potent ATR inhibitor. It enhances the activity of clinical DNA damaging agents commonly used in cancer treatment including topoisomerase inhibitors, gemcitabine, cisplatin, and talazoparib. RepStress and NE gene expression signatures can be exploited as predictive markers for M4344.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA Replication , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Animals , Apoptosis , Cell Proliferation , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Female , Humans , Irinotecan/administration & dosage , Isoxazoles/administration & dosage , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Morpholines/administration & dosage , Pyrazines/administration & dosage , Pyrazoles/administration & dosage , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Topotecan/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Gemcitabine
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33536335

ABSTRACT

Schlafen-11 (SLFN11) inactivation in ∼50% of cancer cells confers broad chemoresistance. To identify therapeutic targets and underlying molecular mechanisms for overcoming chemoresistance, we performed an unbiased genome-wide RNAi screen in SLFN11-WT and -knockout (KO) cells. We found that inactivation of Ataxia Telangiectasia- and Rad3-related (ATR), CHK1, BRCA2, and RPA1 overcome chemoresistance to camptothecin (CPT) in SLFN11-KO cells. Accordingly, we validate that clinical inhibitors of ATR (M4344 and M6620) and CHK1 (SRA737) resensitize SLFN11-KO cells to topotecan, indotecan, etoposide, cisplatin, and talazoparib. We uncover that ATR inhibition significantly increases mitotic defects along with increased CDT1 phosphorylation, which destabilizes kinetochore-microtubule attachments in SLFN11-KO cells. We also reveal a chemoresistance mechanism by which CDT1 degradation is retarded, eventually inducing replication reactivation under DNA damage in SLFN11-KO cells. In contrast, in SLFN11-expressing cells, SLFN11 promotes the degradation of CDT1 in response to CPT by binding to DDB1 of CUL4CDT2 E3 ubiquitin ligase associated with replication forks. We show that the C terminus and ATPase domain of SLFN11 are required for DDB1 binding and CDT1 degradation. Furthermore, we identify a therapy-relevant ATPase mutant (E669K) of the SLFN11 gene in human TCGA and show that the mutant contributes to chemoresistance and retarded CDT1 degradation. Taken together, our study reveals new chemotherapeutic insights on how targeting the ATR pathway overcomes chemoresistance of SLFN11-deficient cancers. It also demonstrates that SLFN11 irreversibly arrests replication by degrading CDT1 through the DDB1-CUL4CDT2 ubiquitin ligase.


Subject(s)
Cell Cycle Proteins/metabolism , Cullin Proteins/metabolism , DNA Damage/genetics , DNA Replication , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proteolysis , Synthetic Lethal Mutations/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/metabolism , Chromosomes, Human/genetics , DNA Replication/genetics , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Enzyme Stability , Genome, Human , Humans , Mitosis , Models, Biological , Molecular Targeted Therapy , Phosphorylation , Protein Binding , RNA Interference , Signal Transduction
12.
DNA Repair (Amst) ; 94: 102926, 2020 10.
Article in English | MEDLINE | ID: mdl-32674013

ABSTRACT

Topoisomerases play a pivotal role in ensuring DNA metabolisms during replication, transcription and chromosomal segregation. To manage DNA topology, topoisomerases generate break(s) in the DNA backbone by forming transient enzyme-DNA cleavage complexes (TOPcc) with phosphotyrosyl linkages between DNA ends and topoisomerase catalytic tyrosyl residues. Topoisomerases have been identified as the cellular targets of a variety of anti-cancer drugs (e.g. topotecan, irinotecan, etoposide and doxorubicin, and antibiotics (e.g. ciprofloxacin and levofloxacin). These drugs, as well as other exogenous and endogenous agents, convert the transient TOPcc into persistent TOPcc, which we refer to as topoisomerase DNA-protein crosslinks (TOP-DPC) that challenge genome integrity and lead to cell death if left unrepaired. Proteolysis of the bulky protein component of TOP-DPC (debulking) is a poorly understood repair process employed across eukaryotes. TOP-DPC proteolysis can be achieved either by the ubiquitin-proteasome pathway (UPP) or by non-proteasomal proteases, which are typified by the metalloprotease SPRTN/WSS1. Debulking of TOP-DPC exposes the phosphotyrosyl bonds, hence enables tyrosyl-DNA phosphodiesterases (TDP1 and TDP2) to access and cleave the bonds. In this review, we focus on current knowledge of the protease pathways for debulking TOP-DPC and highlighting recent advances in understanding the mechanisms regulating the proteolytic repair pathways. We also discuss the avenues that are being exploited to target the proteolytic repair pathways for improving the clinical outcome of topoisomerase inhibitors.


Subject(s)
DNA Adducts/metabolism , DNA Repair , Phosphoric Diester Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , DNA/chemistry , DNA/metabolism , DNA Adducts/chemistry , DNA Topoisomerases/chemistry , DNA Topoisomerases/drug effects , DNA Topoisomerases/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Humans , Proteolysis , Topoisomerase Inhibitors/pharmacology
13.
Proc Natl Acad Sci U S A ; 117(25): 14412-14420, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513688

ABSTRACT

Nucleotide excision repair (NER) removes helix-destabilizing adducts including ultraviolet (UV) lesions, cyclobutane pyrimidine dimers (CPDs), and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). In comparison with CPDs, 6-4PPs have greater cytotoxicity and more strongly destabilizing properties of the DNA helix. It is generally believed that NER is the only DNA repair pathway that removes the UV lesions as evidenced by the previous data since no repair of UV lesions was detected in NER-deficient skin fibroblasts. Topoisomerase I (TOP1) constantly creates transient single-strand breaks (SSBs) releasing the torsional stress in genomic duplex DNA. Stalled TOP1-SSB complexes can form near DNA lesions including abasic sites and ribonucleotides embedded in chromosomal DNA. Here we show that base excision repair (BER) increases cellular tolerance to UV independently of NER in cancer cells. UV lesions irreversibly trap stable TOP1-SSB complexes near the UV damage in NER-deficient cells, and the resulting SSBs activate BER. Biochemical experiments show that 6-4PPs efficiently induce stable TOP1-SSB complexes, and the long-patch repair synthesis of BER removes 6-4PPs downstream of the SSB. Furthermore, NER-deficient cancer cell lines remove 6-4PPs within 24 h, but not CPDs, and the removal correlates with TOP1 expression. NER-deficient skin fibroblasts weakly express TOP1 and show no detectable repair of 6-4PPs. Remarkably, the ectopic expression of TOP1 in these fibroblasts led them to completely repair 6-4PPs within 24 h. In conclusion, we reveal a DNA repair pathway initiated by TOP1, which significantly contributes to cellular tolerance to UV-induced lesions particularly in malignant cancer cells overexpressing TOP1.


Subject(s)
DNA Breaks, Single-Stranded/radiation effects , DNA Repair , DNA Topoisomerases, Type I/metabolism , Ultraviolet Rays/adverse effects , CRISPR-Cas Systems/genetics , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , Fibroblasts , Gene Knockout Techniques , Humans , MCF-7 Cells , Primary Cell Culture , Skin/cytology , Skin/pathology , Skin/radiation effects , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism , Xeroderma Pigmentosum/etiology , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/metabolism
14.
iScience ; 23(4): 101027, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32283528

ABSTRACT

Chemical modifications and adducts at DNA double-strand break (DSB) ends must be cleaned before re-joining by non-homologous end-joining (NHEJ). MRE11 nuclease is essential for efficient removal of Topoisomerase II (TOP2)-DNA adducts from TOP2 poison-induced DSBs. However, mechanisms in MRE11 recruitment to DSB sites in G1 phase remain poorly understood. Here, we report that TOP2-DNA adducts are expeditiously removed through UBC13-mediated polyubiquitination, which promotes DSB resection in G2 phase. We found that this ubiquitin signaling is required for efficient recruitment of MRE11 onto DSB sites in G1 by facilitating localization of RAP80 and BRCA1 to DSB sites and complex formation between BRCA1 and MRE11 at DSB sites. UBC13 and MRE11 are dispensable for restriction-enzyme-induced "clean" DSBs repair but responsible for over 50% and 70% of NHEJ-dependent repair of γ-ray-induced "dirty" DSBs, respectively. In conclusion, ubiquitin signaling promotes nucleolytic removal of DSB blocking adducts by MRE11 before NHEJ.

15.
Environ Mol Mutagen ; 61(6): 602-610, 2020 07.
Article in English | MEDLINE | ID: mdl-32243652

ABSTRACT

The OECD guidelines define the bioassays of identifying mutagenic chemicals, including the thymidine kinase (TK) assay, which specifically detects the mutations that inactivate the TK gene in the human TK6 lymphoid line. However, the sensitivity of this assay is limited because it detects mutations occurring only in the TK gene but not any other genes. Moreover, the limited sensitivity of the conventional TK assay is caused by the usage of DNA repair-proficient wild-type cells, which are capable of accurately repairing DNA damage induced by chemicals. Mutagenic chemicals produce a variety of DNA lesions, including base lesions, sugar damage, crosslinks, and strand breaks. Base damage causes point mutations and is repaired by the base excision repair (BER) and nucleotide excision repair (NER) pathways. To increase the sensitivity of TK assay, we simultaneously disrupted two genes encoding XRCC1, an important BER factor, and XPA, which is essential for NER, generating XRCC1 -/- /XPA -/- cells from TK6 cells. We measured the mutation frequency induced by four typical mutagenic agents, methyl methane sulfonate (MMS), cis-diamminedichloro-platinum(II) (cisplatin, CDDP), mitomycin-C (MMC), and cyclophosphamide (CP) by the conventional TK assay using wild-type TK6 cells and also by the TK assay using XRCC1 -/- /XPA -/- cells. The usage of XRCC1 -/- /XPA -/- cells increased the sensitivity of detecting the mutagenicity by 8.6 times for MMC, 8.5 times for CDDP, and 2.6 times for MMS in comparison with the conventional TK assay. In conclusion, the usage of XRCC1 -/- /XPA -/- cells will significantly improve TK assay.


Subject(s)
Mutagenicity Tests/methods , Mutagens/toxicity , Thymidine Kinase/genetics , Cell Line , DNA Damage/drug effects , DNA Repair , Enzyme Assays/methods , Humans , Mutation Rate , X-ray Repair Cross Complementing Protein 1/genetics , Xeroderma Pigmentosum Group A Protein/genetics
16.
DNA Repair (Amst) ; 89: 102837, 2020 05.
Article in English | MEDLINE | ID: mdl-32200233

ABSTRACT

Topoisomerases are essential enzymes solving DNA topological problems such as supercoils, knots and catenanes that arise from replication, transcription, chromatin remodeling and other nucleic acid metabolic processes. They are also the targets of widely used anticancer drugs (e.g. topotecan, irinotecan, enhertu, etoposide, doxorubicin, mitoxantrone) and fluoroquinolone antibiotics (e.g. ciprofloxacin and levofloxacin). Topoisomerases manipulate DNA topology by cleaving one DNA strand (TOP1 and TOP3 enzymes) or both in concert (TOP2 enzymes) through the formation of transient enzyme-DNA cleavage complexes (TOPcc) with phosphotyrosyl linkages between DNA ends and the catalytic tyrosyl residue of the enzymes. Failure in the self-resealing of TOPcc results in persistent TOPcc (which we refer it to as topoisomerase DNA-protein crosslinks (TOP-DPC)) that threaten genome integrity and lead to cancers and neurodegenerative diseases. The cell prevents the accumulation of topoisomerase-mediated DNA damage by excising TOP-DPC and ligating the associated breaks using multiple pathways conserved in eukaryotes. Tyrosyl-DNA phosphodiesterases (TDP1 and TDP2) cleave the tyrosyl-DNA bonds whereas structure-specific endonucleases such as Mre11 and XPF (Rad1) incise the DNA phosphodiester backbone to remove the TOP-DPC along with the adjacent DNA segment. The proteasome and metalloproteases of the WSS1/Spartan family typify proteolytic repair pathways that debulk TOP-DPC to make the peptide-DNA bonds accessible to the TDPs and endonucleases. The purpose of this review is to summarize our current understanding of how the cell excises TOP-DPC and why, when and where the cell recruits one specific mechanism for repairing topoisomerase-mediated DNA damage, acquiring resistance to therapeutic topoisomerase inhibitors and avoiding genomic instability, cancers and neurodegenerative diseases.


Subject(s)
DNA Adducts/metabolism , DNA Repair , DNA Topoisomerases, Type I , DNA , Humans , Phosphoric Diester Hydrolases/metabolism , Topoisomerase Inhibitors
17.
Proc Natl Acad Sci U S A ; 115(45): E10642-E10651, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30352856

ABSTRACT

Women having BRCA1 germ-line mutations develop cancer in breast and ovary, estrogen-regulated tissues, with high penetrance. Binding of estrogens to the estrogen receptor (ER) transiently induces DNA double-strand breaks (DSBs) by topoisomerase II (TOP2) and controls gene transcription. TOP2 resolves catenated DNA by transiently generating DSBs, TOP2-cleavage complexes (TOP2ccs), where TOP2 covalently binds to 5' ends of DSBs. TOP2 frequently fails to complete its catalysis, leading to formation of pathological TOP2ccs. We have previously shown that the endonucleolytic activity of MRE11 plays a key role in removing 5' TOP2 adducts in G1 phase. We show here that BRCA1 promotes MRE11-mediated removal of TOP2 adducts in G1 phase. We disrupted the BRCA1 gene in 53BP1-deficient ER-positive breast cancer and B cells. The loss of BRCA1 caused marked increases of pathological TOP2ccs in G1 phase following exposure to etoposide, which generates pathological TOP2ccs. We conclude that BRCA1 promotes the removal of TOP2 adducts from DSB ends for subsequent nonhomologous end joining. BRCA1-deficient cells showed a decrease in etoposide-induced MRE11 foci in G1 phase, suggesting that BRCA1 repairs pathological TOP2ccs by promoting the recruitment of MRE11 to TOP2cc sites. BRCA1 depletion also leads to the increase of unrepaired DSBs upon estrogen treatment both in vitro in G1-arrested breast cancer cells and in vivo in epithelial cells of mouse mammary glands. BRCA1 thus plays a critical role in removing pathological TOP2ccs induced by estrogens as well as etoposide. We propose that BRCA1 suppresses tumorigenesis by removing estrogen-induced pathological TOP2ccs throughout the cell cycle.


Subject(s)
BRCA1 Protein/physiology , Breast Neoplasms/genetics , Carcinogenesis/genetics , DNA Topoisomerases, Type II/metabolism , Genomic Instability/genetics , Animals , BRCA1 Protein/genetics , DNA/metabolism , DNA Damage , DNA Repair , Estrogens/physiology , Female , G1 Phase , Histones/metabolism , Humans , MCF-7 Cells , Mammary Glands, Animal/metabolism , Mice , Promoter Regions, Genetic , Receptors, Estrogen/metabolism
18.
Environ Mol Mutagen ; 59(6): 529-538, 2018 07.
Article in English | MEDLINE | ID: mdl-29761828

ABSTRACT

The micronucleus (MN) test has become an attractive tool both for evaluating the genotoxicity of test chemicals because of its ability to detect clastogenic and aneugenic events and for its convenience. As the MN assay has been mostly performed using only DNA repair-proficient mammalian cells, we believed that the comparison of the MN frequency between DNA repair-proficient and -deficient human cells may be an excellent indicator for detecting the genotoxic potential of test chemicals and for understanding their mode of action. To address this issue, the following five genes encoding DNA-damage-response (DDR) factors were disrupted in the TK6 B cell line, a human cell line widely used for the MN test: FANCD2, DNA polymerase ζ (REV3), XRCC1, RAD54, and/or LIG4. Using these isogenic TK6 cell lines, the MN test was conducted for four widely-used DNA-damaging agents: methyl methanesulfonate (MMS), hydrogen peroxide (H2 O2 ), γ-rays, and mitomycin C (MMC). The frequency of micronuclei in the double strand break repair-deficient RAD54-/- /LIG4-/- cells after exposure to γ-rays, H2 O2 , MMS and MMC was 6.2-7.5 times higher than that of parental wild-type TK6 cells. The percentages of cells exhibiting micronuclei in the base excision repair- and single strand break repair-deficient XRCC1-/- cells after exposure to H2 O2 , MMC and MMS were all ∼5 times higher than those of wild-type cells. In summary, a supplementary MN assay using the combination of RAD54-/- /LIG4-/- , XRCC1-/- and wild-type TK6 cells is a promising method for detecting the genotoxic potential of test chemicals and their mode of action. Environ. Mol. Mutagen., 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
DNA Damage/drug effects , Micronucleus Tests/methods , Mutagens/toxicity , Cell Line , DNA Helicases/genetics , DNA Ligase ATP/genetics , DNA Repair , DNA-Binding Proteins , Gene Deletion , Humans , Nuclear Proteins/genetics , X-ray Repair Cross Complementing Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...