Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 22(6): 751-764, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37014264

ABSTRACT

Non-T-cell-inflamed immunologically "cold" tumor microenvironments (TME) are associated with poor responsiveness to immune checkpoint blockade (ICB) and can be sculpted by tumor cell genomics. Here, we evaluated how retinoblastoma (Rb) tumor-suppressor loss-of-function (LOF), one of the most frequent alterations in human cancer and associated with lineage plasticity, poor prognosis, and therapeutic outcomes, alters the TME, and whether therapeutic strategies targeting the molecular consequences of Rb loss enhance ICB efficacy. We performed bioinformatics analysis to elucidate the impact of endogenous Rb LOF on the immune TME in human primary and metastatic tumors. Next, we used isogenic murine models of Rb-deficient prostate cancer for in vitro and in vivo mechanistic studies to examine how Rb loss and bromodomain and extraterminal (BET) domain inhibition (BETi) reprograms the immune landscape, and evaluated in vivo therapeutic efficacy of BETi, singly and in combination with ICB and androgen deprivation therapy. Rb loss was enriched in non-T-cell-inflamed tumors, and Rb-deficient murine tumors demonstrated decreased immune infiltration in vivo. The BETi JQ1 increased immune infiltration into the TME through enhanced tumor cell STING/NF-κB activation and type I IFN signaling within tumor cells, resulting in differential macrophage and T-cell-mediated tumor growth inhibition and sensitization of Rb-deficient prostate cancer to ICB. BETi can reprogram the immunologically cold Rb-deficient TME via STING/NF-κB/IFN signaling to sensitize Rb-deficient prostate cancer to ICB. These data provide the mechanistic rationale to test combinations of BETi and ICB in clinical trials of Rb-deficient prostate cancer.


Subject(s)
Prostatic Neoplasms , Retinal Neoplasms , Retinoblastoma , Male , Humans , Animals , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , NF-kappa B , Immune Checkpoint Inhibitors , Androgen Antagonists , Tumor Microenvironment
2.
Transl Oncol ; 15(1): 101256, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34717279

ABSTRACT

Human papillomavirus type-16 (HPV16) is classified into lineages, A, B, C and D and 10 sub-lineages portraying variable infectivity, persistence, and cytological outcomes, however, with geographical variations. Our objective was to delineate the distinctive features of lineages among cervical squamous cell carcinoma (SCC) in the eastern region of India. A total of 145 SCC cases and 24 non-malignant specimens, harboring episomal HPV16, were included. The presence of higher proportion of lineage A over D was observed among SCC cases (86.89% A1, 8.97% D1 and 4.14% D2), while only A1 sub-lineage viruses were found among control specimens. Among the A1 viruses, an association of variants in the E5 (Y44L, I65V), E6 (L83V) genes and LCR: C7577T with SCC, with combined Odd's ratio (95% CI) of 20.5(4.61-91.25) was observed. Network analyses revealed the presence of 10 clades of lineage A viruses comprising of 64 HPV16 genomes harboring the risk alleles. High episomal HPV16 DNA copy numbers (adjusted p-value= 0.0271) and E7 mRNA expression (p-value=0.000017) predominated in SCC with lineage A, over D. Our study highlights the distinctive modalities of oncogenicity among different HPV16 lineages.

3.
Cell Death Discov ; 5: 81, 2019.
Article in English | MEDLINE | ID: mdl-30937183

ABSTRACT

Heterogeneity in cervical cancers (CaCx) in terms of HPV16 physical status prompted us to investigate the mRNA and miRNA signatures among the different categories of CaCx samples. We performed microarray-based mRNA expression profiling and quantitative real-time PCR-based expression analysis of some prioritised miRNAs implicated in cancer-related pathways among various categories of cervical samples. Such samples included HPV16-positive CaCx cases that harboured either purely integrated HPV16 genomes (integrated) and those that harboured episomal viral genomes, either pure or concomitant with integrated viral genomes (episomal), which were compared with normal cervical samples that were either HPV negative or positive for HPV16. The mRNA expression profile differed characteristically between integrated and episomal CaCx cases for enriched biological pathways. miRNA expression profiles also differed among CaCx cases compared with controls (upregulation-miR-21, miR-16, miR-205, miR-323; downregulation-miR-143, miR-196b, miR-203, miR-34a; progressive upregulation-miR-21 and progressive downregulation-miR-143, miR-34a, miR-196b and miR-203) in the order of HPV-negative controls, HPV16-positive non-malignant samples and HPV16-positive CaCx cases. miR-200a was upregulated in HPV16-positive cervical tissues irrespective of histopathological status. Expression of majority of the predicted target genes was negatively correlated with their corresponding miRNAs, irrespective of the CaCx subtypes. E7 mRNA expression correlated positively with miR-323 expression among episomal cases and miR-203, among integrated cases. miR-181c expression was downregulated only among the episomal CaCx cases and negatively correlated with protein coding transcript of the proliferative target gene, CKS1B of the significantly enriched "G2/M DNA Damage Checkpoint Regulation" pathway among CaCx cases. Thus, the two CaCx subtypes are distinct entities at the molecular level, which could be differentially targeted for therapy. In fact, availability of a small molecule inhibitor of CKS1B, suggests that drugging CKS1B could be a potential avenue of treating the large majority of CaCx cases harbouring episomal HPV16.

4.
Oncotarget ; 8(22): 36591-36602, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28402266

ABSTRACT

The Homeobox (HOX) genes encode important transcription factors showing deregulated expression in several cancers. However, their role in cervical cancer pathogenesis, remains largely unexplored. Herein, we studied their association with Human Papillomavirus type 16 (HPV16) mediated cervical cancers. Our previously published gene expression microarray data revealed a significant alteration of 12 out of 39 HOX cluster members among cervical cancer cases, in comparison to the histopathologically normal controls. Of these, we validated seven (HOXA10, HOXA13, HOXB13, HOXC8, HOXC9, HOXC11 and HOXD10) by quantitative real-time PCR. We identified decreased HOXA10 expression as opposed to the increased expression of the rest. Such decrease was independent of the integration status of HPV16 genome, but correlated negatively with E7 expression in clinical samples, that was confirmed in vitro. HOXA10 and HOXB13 revealed association with Epithelial-Mesenchymal Transition (EMT). While HOXA10 expression correlated positively with E-Cadherin and negatively with Vimentin expression, HOXB13 showed the reverse trend. Chromatin immunoprecipitation study in vitro revealed the ability of E7 to increase HOX gene expression by epigenetic regulation, affecting the H3K4me3 and H3K27me3 status of their promoters, resulting from a loss of PRC2-LSD1 complex activity. Thus, besides identifying the deregulated expression of HOX cluster members in HPV16 positive cervical cancer and their association with EMT, our study highlighted the mechanism of HPV16 E7-mediated epigenetic regulation of HOX genes in such cancers, potentially serving as bedrock for functional studies in the future.


Subject(s)
Homeodomain Proteins/genetics , Multigene Family , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Transcriptome , Uterine Cervical Neoplasms/etiology , Adult , Aged , Cadherins/genetics , Cadherins/metabolism , Case-Control Studies , Cell Line , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Expression Regulation, Viral , Histones/metabolism , Humans , Methylation , Middle Aged , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/virology , Promoter Regions, Genetic , Reproducibility of Results , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Vimentin/genetics , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...