Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Small ; : e2400815, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738752

ABSTRACT

Complete encapsulation of nucleic acids by lipid-based nanoparticles (LNPs) is often thought to be one of the main prerequisites for successful nucleic acid delivery, as the lipid environment protects mRNA from degradation by external nucleases and assists in initiating delivery processes. However, delivery of mRNA via a preformed vesicle approach (PFV-LNPs) defies this precondition. Unlike traditional LNPs, PFV-LNPs are formed via a solvent-free mixing process, leading to a superficial mRNA localization. While demonstrating low encapsulation efficiency in the RiboGreen assay, PFV-LNPs improved delivery of mRNA to the retina by up to 50% compared to the LNP analogs across several benchmark formulations, suggesting the utility of this approach regardless of the lipid composition. Successful mRNA and gene editors' delivery is observed in the retinal pigment epithelium and photoreceptors and validated in mice, non-human primates, and human retinal organoids. Deploying PFV-LNPs in gene editing experiments result in a similar extent of gene editing compared to analogous LNP (up to 3% on genomic level) in the Ai9 reporter mouse model; but, remarkably, retinal tolerability is significantly improved for PFV-LNP treatment. The study findings indicate that the LNP formulation process can greatly influence mRNA transfection and gene editing outcomes, improving LNP treatment safety without sacrificing efficacy.

2.
Adv Drug Deliv Rev ; 209: 115305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626860

ABSTRACT

Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.


Subject(s)
Cystic Fibrosis , Gene Transfer Techniques , Genetic Therapy , Nanoparticles , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Humans , Genetic Therapy/methods , Nanoparticles/chemistry , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics
3.
ACS Nano ; 18(17): 11335-11348, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38621181

ABSTRACT

Leveraging the extensive surface area of the lungs for gene therapy, the inhalation route offers distinct advantages for delivery. Clinical nebulizers that employ vibrating mesh technology are the standard choice for converting liquid medicines into aerosols. However, they have limitations when it comes to delivering mRNA through inhalation, including severe damage to nanoparticles due to shearing forces. Here, we introduce a microfluidic aerosolization platform (MAP) that preserves the structural and physicochemical integrity of lipid nanoparticles, enabling safe and efficient delivery of mRNA to the respiratory system. Our results demonstrated the superiority of the MAP over the conventional vibrating mesh nebulizer, as it avoided problems such as particle aggregation, loss of mRNA encapsulation, and deformation of the nanoparticle morphology. Notably, aerosolized nanoparticles generated by the microfluidic device led to enhanced transfection efficiency across various cell lines. In vivo experiments with mice that inhaled these aerosolized nanoparticles revealed successful lung-specific mRNA transfection without observable signs of toxicity. This MAP may represent an advancement for the pulmonary gene therapy, enabling precise and effective delivery of aerosolized nanoparticles.


Subject(s)
Aerosols , Liposomes , Nanoparticles , RNA, Messenger , Nanoparticles/chemistry , Animals , RNA, Messenger/genetics , RNA, Messenger/administration & dosage , Aerosols/chemistry , Mice , Administration, Inhalation , Humans , Lipids/chemistry , Microfluidics/methods , Particle Size , Lab-On-A-Chip Devices
4.
Proc Natl Acad Sci U S A ; 121(11): e2307813120, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437570

ABSTRACT

Lipid nanoparticles (LNPs) largely rely on ionizable lipids to yield successful nucleic acid delivery via electrostatic disruption of the endosomal membrane. Here, we report the identification and evaluation of ionizable lipids containing a thiophene moiety (Thio-lipids). The Thio-lipids can be readily synthesized via the Gewald reaction, allowing for modular lipid design with functional constituents at various positions of the thiophene ring. Through the rational design of ionizable lipid structure, we prepared 47 Thio-lipids and identified some structural criteria required in Thio-lipids for efficient mRNA (messenger RNA) encapsulation and delivery in vitro and in vivo. Notably, none of the tested lipids have a pH-response profile like traditional ionizable lipids, potentially due to the electron delocalization in the thiophene core. Placement of the tails and localization of the ionizable headgroup in the thiophene core can endow the nanoparticles with the capability to reach various tissues. Using high-throughput formulation and barcoding techniques, we optimized the formulations to select two top lipids-20b and 29d-and investigated their biodistribution in mice. Lipid 20b enabled LNPs to transfect the liver and spleen, and 29d LNP transfected the lung and spleen. Unexpectedly, LNP with lipid 20b was especially potent in mRNA delivery to the retina with no acute toxicity, leading to the successful delivery to the photoreceptors and retinal pigment epithelium in non-human primates.


Subject(s)
Lung , Retina , Animals , Mice , Tissue Distribution , RNA, Messenger/genetics , Lipids
5.
bioRxiv ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38293192

ABSTRACT

Leveraging the extensive surface area of the lungs for gene therapy, inhalation route offers distinct advantages for delivery. Clinical nebulizers that employ vibrating mesh technology are the standard choice for converting liquid medicines into aerosols. However, they have limitations when it comes to delivering mRNA through inhalation, including severe damage to nanoparticles due to shearing forces. Here, we introduce a novel microfluidic aerosolization platform (MAP) that preserves the structural and physicochemical integrity of lipid nanoparticles, enabling safe and efficient mRNA delivery to the respiratory system. Our results demonstrated the superiority of the novel MAP over the conventional vibrating mesh nebulizer, as it avoided problems such as particle aggregation, loss of mRNA encapsulation, and deformation of nanoparticle morphology. Notably, aerosolized nanoparticles generated by the microfluidic device led to enhanced transfection efficiency across various cell lines. In vivo experiments with mice that inhaled these aerosolized nanoparticles revealed successful, lung-specific mRNA transfection without observable signs of toxicity. This pioneering MAP represents a significant advancement for the pulmonary gene therapy, enabling precise and effective delivery of aerosolized nanoparticles.

6.
Nat Nanotechnol ; 19(4): 428-447, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151642

ABSTRACT

In recent years, nanoparticles have evolved to a clinical modality to deliver diverse nucleic acids. Rising interest in nanomedicines comes from proven safety and efficacy profiles established by continuous efforts to optimize physicochemical properties and endosomal escape. However, despite their transformative impact on the pharmaceutical industry, the clinical use of non-viral nucleic acid delivery is limited to hepatic diseases and vaccines due to liver accumulation. Overcoming liver tropism of nanoparticles is vital to meet clinical needs in other organs. Understanding the anatomical structure and physiological features of various organs would help to identify potential strategies for fine-tuning nanoparticle characteristics. In this Review, we discuss the source of liver tropism of non-viral vectors, present a brief overview of biological structure, processes and barriers in select organs, highlight approaches available to reach non-liver targets, and discuss techniques to accelerate the discovery of non-hepatic therapies.


Subject(s)
Nanoparticles , Nucleic Acids , Liver , Endosomes , Nanoparticles/therapeutic use , Nanoparticles/chemistry
7.
Nat Commun ; 14(1): 6468, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833442

ABSTRACT

Ocular delivery of lipid nanoparticle (LNPs) packaged mRNA can enable efficient gene delivery and editing. We generated LNP variants through the inclusion of positively charged-amine-modified polyethylene glycol (PEG)-lipids (LNPa), negatively charged-carboxyl-(LNPz) and carboxy-ester (LNPx) modified PEG-lipids, and neutral unmodified PEG-lipids (LNP). Subretinal injections of LNPa containing Cre mRNA in the mouse show tdTomato signal in the retinal pigmented epithelium (RPE) like conventional LNPs. Unexpectedly, LNPx and LNPz show 27% and 16% photoreceptor transfection, respectively, with striking localization extending from the photoreceptor synaptic pedicle to the outer segments, displaying pan-retinal distribution in the photoreceptors and RPE. LNPx containing Cas9 mRNA and sgAi9 leads to the formation of an oval elongated structure with a neutral charge resulting in 16.4% editing restricted to RPE. Surface modifications of LNPs with PEG variants can alter cellular tropism of mRNA. LNPs enable genome editing in the retina and in the future can be used to correct genetic mutations that lead to blindness.


Subject(s)
Nanoparticles , Polyethylene Glycols , Animals , Mice , Polyethylene Glycols/chemistry , Gene Editing , Nanoparticles/chemistry , Retinal Pigment Epithelium , RNA, Messenger/chemistry , Lipids/chemistry , RNA, Small Interfering
8.
Rheumatol Immunol Res ; 4(2): 90-97, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37818347

ABSTRACT

Objective: Synovial fibroblasts in patients with rheumatoid arthritis (RA) contribute substantially to the perpetuation of synovitis and invasion to cartilage and bone, and are potential therapeutic targets. Fibroblast activation protein (FAP) is highly expressed by RA synovial fibroblasts and the expression is relatively specific. We tested whether FAP can serve as a molecular target to modulate synovial fibroblasts for therapy in experimental arthritis. Methods: mRNA encoding consensus FAP (cFAP) was encapsulated in lipid nanoparticles (LNP) and was injected intramuscularly as vaccine prior to induction of collagen-induced arthritis (CIA) and collagen antibody induced arthritis (CAIA) in mice. Development of CIA and CAIA was assessed clinically and by histology. Results: cFAP mRNA-LNP vaccine provoked immune response to cFAP and mouse FAP (mFAP); prevented onset of CIA in 40% of mice and significantly reduced the severity of arthritis. In CAIA, cFAP mRNA-LNP did not prevent onset of arthritis but significantly reduced the severity of arthritis. Conclusion: cFAP mRNA-LNP vaccine was able to provoke immune response to mFAP and suppress inflammatory arthritis.

9.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631003

ABSTRACT

In biomedical applications, nanomaterial-based delivery vehicles, such as lipid nanoparticles, have emerged as promising instruments for improving the solubility, stability, and encapsulation of various payloads. This article provides a formal review focusing on the reactogenicity of empty lipid nanoparticles used as delivery vehicles, specifically emphasizing their application in mRNA-based therapies. Reactogenicity refers to the adverse immune responses triggered by xenobiotics, including administered lipid nanoparticles, which can lead to undesirable therapeutic outcomes. The key components of lipid nanoparticles, which include ionizable lipids and PEG-lipids, have been identified as significant contributors to their reactogenicity. Therefore, understanding the relationship between lipid nanoparticles, their structural constituents, cytokine production, and resultant reactogenic outcomes is essential to ensure the safe and effective application of lipid nanoparticles in mRNA-based therapies. Although efforts have been made to minimize these adverse reactions, further research and standardization are imperative. By closely monitoring cytokine profiles and assessing reactogenic manifestations through preclinical and clinical studies, researchers can gain valuable insights into the reactogenic effects of lipid nanoparticles and develop strategies to mitigate undesirable reactions. This comprehensive review underscores the importance of investigating lipid nanoparticle reactogenicity and its implications for the development of mRNA-lipid nanoparticle therapeutics in various applications beyond vaccine development.

10.
Mol Ther ; 31(10): 2975-2990, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37644723

ABSTRACT

Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.


Subject(s)
Genome-Wide Association Study , Nanoparticles , Animals , Mice , Tissue Distribution , Prefrontal Cortex , RNA , RNA, Messenger , RNA, Small Interfering
11.
AAPS J ; 25(4): 65, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380935

ABSTRACT

Prime editing is an advanced gene editing platform with potential to correct almost any disease-causing mutation. As genome editors have evolved, their size and complexity have increased, hindering delivery technologies with low-carrying capacity and endosomal escape. We formulated an array of lipid nanoparticles (LNPs) containing prime editors (PEs). We were able to encapsulate PEs in LNPs and confirmed the presence of PE mRNA and two different guide RNAs using HPLC. In addition, we developed a novel reporter cell line for rapid identification of LNPs suited for prime editing. A 54% prime editing rate was observed with enhanced LNPs (eLNPs) containing the cholesterol analog ß-sitosterol at optimal ratios of RNA cargoes. eLNPs displayed a polyhedral morphology and a more fluid membrane state that led to improved endosomal escape, eventually causing onset of editing within 9 h and reaching maximum efficiency after 24 h. Hence, PEs delivered using LNPs can propel a new wave of therapies for many additional targets potentially enabling a range of new applications.


Subject(s)
Endosomes , Gene Editing , Cell Line , Chromatography, High Pressure Liquid
12.
Cell Rep ; 42(5): 112372, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37086404

ABSTRACT

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Subject(s)
NAD , Nicotinamide Mononucleotide , Humans , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Neurons/metabolism , Mitochondria/metabolism , Autophagy , Niacinamide/metabolism
13.
Sci Adv ; 9(2): eadd4623, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36630502

ABSTRACT

Lipid nanoparticle (LNP)-based mRNA delivery holds promise for the treatment of inherited retinal degenerations. Currently, LNP-mediated mRNA delivery is restricted to the retinal pigment epithelium (RPE) and Müller glia. LNPs must overcome ocular barriers to transfect neuronal cells critical for visual phototransduction, the photoreceptors (PRs). We used a combinatorial M13 bacteriophage-based heptameric peptide phage display library for the mining of peptide ligands that target PRs. We identified the most promising peptide candidates resulting from in vivo biopanning. Dye-conjugated peptides showed rapid localization to the PRs. LNPs decorated with the top-performing peptide ligands delivered mRNA to the PRs, RPE, and Müller glia in mice. This distribution translated to the nonhuman primate eye, wherein robust protein expression was observed in the PRs, Müller glia, and RPE. Overall, we have developed peptide-conjugated LNPs that can enable mRNA delivery to the neural retina, expanding the utility of LNP-mRNA therapies for inherited blindness.


Subject(s)
Nanoparticles , Rodentia , Mice , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ligands , Retina/metabolism , Peptides/metabolism , Primates
14.
Adv Sci (Weinh) ; 9(35): e2202556, 2022 12.
Article in English | MEDLINE | ID: mdl-36216580

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause lethal pulmonary damage in humans. It contains spike proteins on its envelope that bind to human angiotensin-converting enzyme 2 (hACE2) expressed on airway cells, enabling entry of the virus, and causing infection. The soluble form of hACE2 binds SARS-CoV-2 spike protein, prevents viral entry into target cells, and ameliorates lung injury; however, its short half-life limits therapeutic utilities. Here, synthetic mRNA is engineered to encode a soluble form of hACE2 (hsACE2) to prevent viral infection. A novel lipid nanoparticle (LNP) is used for packaging and delivering mRNA to cells to produce hsACE2 proteins. Intravenously administered LNP delivers mRNA to hepatocytes, leading to the production of circulatory hsACE2 initiated within 2 h and sustained over several days. Inhaled LNP results in lung transfection and secretion of mucosal hsACE2 to lung epithelia, the primary site of entry and pathogenesis for SARS-CoV-2. Furthermore, mRNA-generated hsACE2 binds to the receptor-binding domain of the viral spike protein. Finally, hsACE2 effectively inhibits SARS-CoV-2 and its pseudoviruses from infecting host cells. The proof of principle study shows that mRNA-based nanotherapeutics can be potentially deployed to neutralize SARS-CoV-2 and open new treatment opportunities for coronavirus disease 2019 (COVID-19).


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , RNA, Messenger , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , COVID-19/therapy , SARS-CoV-2/enzymology , RNA, Messenger/administration & dosage , RNA, Messenger/genetics
15.
Mol Pharm ; 19(11): 4275-4285, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36129254

ABSTRACT

Lipid nanoparticles containing messenger RNA (mRNA-LNPs) have launched to the forefront of nonviral delivery systems with their realized potential during the COVID-19 pandemic. Here, we investigate the impact of commonly used biological buffers on the performance and durability of mRNA-LNPs. We tested the compatibility of three common buffers─HEPES, Tris, and phosphate-buffered saline─with a DLin-MC3-DMA mRNA-LNP formulation before and after a single controlled freeze-thaw cycle. We hypothesized that buffer composition would affect lipid-aqueous phase separation. Indeed, the buffers imposed structural changes in LNP morphology as indicated by electron microscopy, differential scanning calorimetry, and membrane fluidity assays. We employed in vitro and in vivo models to measure mRNA transfection and found that Tris or HEPES-buffered LNPs yielded better cryoprotection and transfection efficiency compared to PBS. Understanding the effects of various buffers on LNP morphology and efficacy provides valuable insights into maintaining the stability of LNPs after long-term storage.


Subject(s)
COVID-19 , Nanoparticles , Humans , RNA, Messenger/genetics , RNA, Messenger/chemistry , Lipids/chemistry , Pandemics , Nanoparticles/chemistry , Liposomes , RNA, Small Interfering/chemistry
16.
Small ; 18(44): e2204436, 2022 11.
Article in English | MEDLINE | ID: mdl-36098251

ABSTRACT

This study presents the first messenger RNA (mRNA) therapy for metastatic ovarian cancer and cachexia-induced muscle wasting based on lipid nanoparticles that deliver follistatin (FST) mRNA predominantly to cancer clusters following intraperitoneal administration. The secreted FST protein, endogenously synthesized from delivered mRNA, efficiently reduces elevated activin A levels associated with aggressive ovarian cancer and associated cachexia. By altering the cancer cell phenotype, mRNA treatment prevents malignant ascites, delays cancer progression, induces the formation of solid tumors, and preserves muscle mass in cancer-bearing mice by inhibiting negative regulators of muscle mass. Finally, mRNA therapy provides synergistic effects in combination with cisplatin, increasing the survival of mice and counteracting muscle atrophy induced by chemotherapy and cancer-associated cachexia. The treated mice develop few nonadherent tumors that are easily resected from the peritoneum. Clinically, this nanomedicine-based mRNA therapy can facilitate complete cytoreduction, target resistance, improve resilience during aggressive chemotherapy, and improve survival in advanced ovarian cancer.


Subject(s)
Nanoparticles , Ovarian Neoplasms , Humans , Female , Cachexia/drug therapy , Cachexia/metabolism , Follistatin/metabolism , Follistatin/pharmacology , Follistatin/therapeutic use , RNA, Messenger/genetics , RNA, Messenger/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Ovarian Neoplasms/complications , Ovarian Neoplasms/therapy , Muscle, Skeletal/metabolism
17.
ACS Nano ; 16(9): 14792-14806, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36038136

ABSTRACT

Despite lipid nanoparticles' (LNPs) success in the effective and safe delivery of mRNA vaccines, an inhalation-based mRNA therapy for lung diseases remains challenging. LNPs tend to disintegrate due to shear stress during aerosolization, leading to ineffective delivery. Therefore, LNPs need to remain stable through the process of nebulization and mucus penetration, yet labile enough for endosomal escape. To meet these opposing needs, we utilized PEG lipid to enhance the surficial stability of LNPs with the inclusion of a cholesterol analog, ß-sitosterol, to improve endosomal escape. Increased PEG concentrations in LNPs enhanced the shear resistance and mucus penetration, while ß-sitosterol provided LNPs with a polyhedral shape, facilitating endosomal escape. The optimized LNPs exhibited a uniform particle distribution, a polyhedral morphology, and a rapid mucosal diffusion with enhanced gene transfection. Inhaled LNPs led to localized protein production in the mouse lung without pulmonary or systemic toxicity. Repeated administration of these LNPs led to sustained protein production in the lungs. Lastly, mRNA encoding the cystic fibrosis transmembrane conductance regulator (CFTR) was delivered after nebulization to a CFTR-deficient animal model, resulting in the pulmonary expression of this therapeutic protein. This study demonstrated the rational design approach for clinical translation of inhalable LNP-based mRNA therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Nanoparticles , Animals , Cholesterol , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Lipids , Liposomes , Mice , RNA, Messenger/genetics
18.
Nanomedicine ; 42: 102550, 2022 06.
Article in English | MEDLINE | ID: mdl-35292368

ABSTRACT

mRNA therapeutics have increased in popularity, largely due to the transient and fast nature of protein expression and the low risk of off-target effects. This has increased drastically with the remarkable success of mRNA-based vaccines for COVID-19. Despite advances in lipid nanoparticle (LNP)-based delivery, the mechanisms that regulate efficient endocytic trafficking and translation of mRNA remain poorly understood. Although it is widely acknowledged that the extracellular matrix (ECM) regulates uptake and expression of exogenous nano-complexed genetic material, its specific effects on mRNA delivery and expression have not yet been examined. Here, we demonstrate a critical role for matrix stiffness in modulating both mRNA transfection and expression and uncover distinct mechano-regulatory mechanisms for endocytosis of mRNA through RhoA mediated mTOR signaling and cytoskeletal dynamics. Our findings have implications for effective delivery of therapeutic mRNA to targeted tissues that may be differentially affected by tissue and matrix stiffness.


Subject(s)
COVID-19 , Nanoparticles , COVID-19/therapy , COVID-19 Vaccines , Humans , Hydrogels , Lipids/genetics , Liposomes , RNA, Messenger/genetics
19.
Trends Pharmacol Sci ; 43(5): 355-357, 2022 05.
Article in English | MEDLINE | ID: mdl-35042613

ABSTRACT

RNA-based therapeutics commonly use exogenous components to shuttle their cargo, leading to nonselectivity or immunogenicity. Segel et al. have elucidated an endogenous modular retroviral-like delivery system capable of encapsulating mRNA, which elicits effective transport inside cells, priming the development of endogenous vectors for gene delivery for amelioration of disease.


Subject(s)
Retroelements , Terminal Repeat Sequences , Humans , RNA, Messenger/genetics
20.
Acc Chem Res ; 55(1): 2-12, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34850635

ABSTRACT

Lipid nanoparticles (LNPs) are a type of lipid vesicles that possess a homogeneous lipid core. These vesicles are widely used in small-molecule drug and nucleic acid delivery and recently gained much attention because of their remarkable success as a delivery platform for COVID-19 mRNA vaccines. Nonetheless, the utility of transient protein expression induced by mRNA extends far beyond vaccines against infectious diseases─they also hold promise as cancer vaccines, protein replacement therapies, and gene editing components for rare genetic diseases. However, naked mRNA is inherently unstable and prone to rapid degradation by nucleases and self-hydrolysis. Encapsulation of mRNA within LNPs protects mRNA from extracellular ribonucleases and assists with intracellular mRNA delivery.In this Account, we discuss the core features of LNPs for RNA delivery. We focus our attention on LNPs designed to deliver mRNA; however, we also include examples of siRNA-LNP delivery where appropriate to highlight the commonalities and the dissimilarities due to the nucleic acid structure. First, we introduce the concept of LNPs, the advantages and disadvantages of utilizing nucleic acids as therapeutic agents, and the general reasoning behind the molecular makeup of LNPs. We also briefly highlight the most recent clinical successes of LNP-based nucleic acid therapies. Second, we describe the theory and methods of LNP self-assembly. The common idea behind all of the preparation methods is inducing electrostatic interactions between the nucleic acid and charged lipids and promoting nanoparticle growth via hydrophobic interactions. Third, we break down the LNP composition with special attention to the fundamental properties and purposes of each component. This includes the identified molecular design criteria, commercial sourcing, impact on intracellular trafficking, and contribution to the properties of LNPs. One of the key components of LNPs is ionizable lipids, which initiate electrostatic binding with endosomal membranes and facilitate cytosolic release; however, the roles of other lipid components should not be disregarded, as they are associated with stability, clearance, and distribution of LNPs. Fourth, we review the attributes of LNP constructs as a whole that can heavily influence RNA delivery. These attributes are LNP size, charge, internal structure, lipid packing, lipid membrane hydration, stability, and affinity toward biomacromolecules. We also discuss the specific techniques used to examine these attributes and how they can be adjusted. Finally, we offer our perspective on the future of RNA therapies and some questions that remain in the realm of LNP formulation and optimization.


Subject(s)
COVID-19 , Nanoparticles , Humans , Liposomes , RNA, Messenger/genetics , RNA, Small Interfering/genetics , SARS-CoV-2 , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...