Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Adv Sci (Weinh) ; 10(19): e2207512, 2023 07.
Article in English | MEDLINE | ID: mdl-37166046

ABSTRACT

Clustered randomly interspaced short palindromic repeats (CRISPRs) and its associated endonuclease protein, i.e., Cas9, have been discovered as an immune system in bacteria and archaea; nevertheless, they are now being adopted as mainstream biotechnological/molecular scissors that can modulate ample genetic and nongenetic diseases via insertion/deletion, epigenome editing, messenger RNA editing, CRISPR interference, etc. Many Food and Drug Administration-approved and ongoing clinical trials on CRISPR adopt ex vivo strategies, wherein the gene editing is performed ex vivo, followed by reimplantation to the patients. However, the in vivo delivery of the CRISPR components is still under preclinical surveillance. This review has summarized the nonviral nanodelivery strategies for gene editing using CRISPR/Cas9 and its recent advancements, strategic points of view, challenges, and future aspects for tissue-specific in vivo delivery of CRISPR/Cas9 components using nanomaterials.


Subject(s)
Gene Editing , Nanostructures , United States , Humans , CRISPR-Cas Systems/genetics , Endonucleases/genetics , RNA, Messenger
3.
J Control Release ; 359: 161-174, 2023 07.
Article in English | MEDLINE | ID: mdl-37182806

ABSTRACT

Glioblastoma multiforme (GBM) is the deadliest brain tumor with a poor prognosis and limited therapeutic options. Temozolomide (TMZ) is the first-line chemotherapeutic agent used for the treatment of GBM; however, it suffers from several limitations, including short half-life, rapid metabolism, <1% brain bioavailability, methyl guanine methyl transferase (MGMT) based chemoresistance, and hematological toxicities. Several approaches have been adopted to overcome these limitations, particularly by using nanotechnology-based systems, but its physicochemical properties make TMZ challenging to load into these nanocarriers. In the current research, we conjugated TMZ with different fatty acids, i.e., linoleic acid (LA), oleic acid (OA), and palmitic acid (PA), to obtain TMZ-fatty acid conjugates, which are comparatively hydrophobic, less prone to degradation and potent. These conjugates were thoroughly characterized using 1H NMR spectroscopy, high-resolution mass spectrometry (HR-MS), and reverse phase-high performance liquid chromatography (RP-HPLC). The synthesized conjugates, namely Temozolomide-oleic acid (TOA,6R1), Temozolomide-linoleic acid (TLA, 6R2), and Temozolomide-palmitic acid (TPA, 6R3), showed an IC50 of 101.4, 67.97, and 672.04 µM, respectively in C6 cells and 428.257, 366.43 and 413.69 µM, respectively in U87-MG cells. On the other hand, the free TMZ showed an IC50 of >1000 µM and 564.23 µM in C6 and U87-MG, respectively. Further, the in vivo efficacy of the TMZ-fatty acid conjugates was evaluated in the C6-induced orthotropic rat glioblastoma model, wherein the TMZ-fatty acid conjugate showed improved survival rate (1.6 folds) and overall health of the animals. Collectively, the conjugation of fatty acids with TMZ improves its anticancer potential against glioblastoma multiforme (GBM).


Subject(s)
Brain Neoplasms , Glioblastoma , Rats , Animals , Temozolomide/therapeutic use , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Fatty Acids , Cell Line, Tumor , Brain Neoplasms/metabolism , Linoleic Acids/therapeutic use , Palmitic Acids/therapeutic use , Oleic Acids/therapeutic use , Drug Resistance, Neoplasm , Xenograft Model Antitumor Assays
4.
Macromol Rapid Commun ; 44(14): e2300101, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37186473

ABSTRACT

CRISPR/Cas9 has proven its accuracy and precision for gene editing by making a double-strand break at the predetermined site. Despite being a mainstream gene editing tool, CRISPR/Cas9 has limitations for its in vivo delivery due to the physico-chemical properties such as high molecular weight, supranegative charge, degradation in the presence of nucleases, etc. Hereby, a cationic lipopolymer is explored for its efficiency in delivering CRISPR/Cas9 plasmid (pCas9) in vitro and in vivo. The lipopolymer is utilized to form blank cationic nanoplexes having a zeta potential of +15.8 ± 0.7 mV. Being cationic, the blank nanoplexes are able to condense the pCas9 plasmid at a ratio of 1:20 with a complexation efficiency of ≈98% and show a size and zeta potential of ≈141 ± 16 nm and 4.2 mV ± 0.7, respectively. The pCas9-loaded nanoplexes show a transfection efficiency of ≈69% in ARPE-19 cells and show ≈22% of indel frequency, indicating the successful translation of Cas9 protein and guide RNA in the cytosol. Further, they are found to be stable under in vivo environment when given intravenously in Swiss albino mice. These lipopolymeric nanoplexes can be a potential carrier for CRISPR plasmids for genome editing applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mice , CRISPR-Associated Protein 9/metabolism , Transfection , Plasmids/genetics
5.
Asian J Pharm Sci ; 17(2): 153-176, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36320315

ABSTRACT

CRISPR/Cas, an adaptive immune system in bacteria, has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities. It has been explored for a variety of applications, including gene modulation, epigenome editing, diagnosis, mRNA editing, etc. It has found applications in retinal dystrophic conditions including progressive cone and cone-rod dystrophies, congenital stationary night blindness, X-linked juvenile retinoschisis, retinitis pigmentosa, age-related macular degeneration, leber's congenital amaurosis, etc. Most of the therapies for retinal dystrophic conditions work by regressing symptoms instead of reversing the gene mutations. CRISPR/Cas9 through indel could impart beneficial effects in the reversal of gene mutations in dystrophic conditions. Recent research has also consolidated on the approaches of using CRISPR systems for retinal dystrophies but their delivery to the posterior part of the eye is a major concern due to high molecular weight, negative charge, and in vivo stability of CRISPR components. Recently, non-viral vectors have gained interest due to their potential in tissue-specific nucleic acid (miRNA/siRNA/CRISPR) delivery. This review highlights the opportunities of retinal dystrophies management using CRISPR/Cas nanomedicine.

6.
J Mater Chem B ; 10(37): 7634-7649, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35946380

ABSTRACT

sgRNA/Cas9 ribonucleoproteins (RNPs) provide a site-specific robust gene-editing approach avoiding the mutagenesis and unwanted off-target effects. However, the high molecular weight (∼165 kDa), hydrophilicity and net supranegative charge (∼-20 mV) hinder the intracellular delivery of these RNPs. In the present study, we have prepared cationic RNPs lipopolymeric nanoplexes that showed a size of 117.3 ± 7.64 nm with +6.17 ± 1.04 mV zeta potential and >90% entrapment efficiency of RNPs. Further, these RNPs lipopolymeric nanoplexes showed good complexation efficiency and were found to be stable for 12 h with fetal bovine serum. These RNPs lipopolymeric nanoplexes did not induce any significant cytotoxicity in HEK293T cells, and were efficiently uptaken via a clathrin-mediated pathway with optimal transfection efficiency and nuclear localization after 48 h. Further, HEK293T cells having the mGFP insert were used as a cell line model for gene editing, wherein the loss of the mGFP signal was observed as a function of gene editing after transfection with mGFP targeting RNPs lipopolymeric nanoplexes. Further, the T7 endonuclease and TIDE assay data showed a decent gene editing efficiency. Additionally, the lipopolymeric nanoplexes were able to transfect muscle cells in vivo, when injected intra-muscularly. Collectively, this study explored the potential of cationic lipopolymeric nanoplexes for delivering gene-editing endonucleases.


Subject(s)
CRISPR-Cas Systems , Ribonucleoproteins , CRISPR-Cas Systems/genetics , Clathrin/genetics , Clathrin/metabolism , Endonucleases/genetics , Endonucleases/metabolism , HEK293 Cells , Humans , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Serum Albumin, Bovine/metabolism
7.
Asia Pac J Ophthalmol (Phila) ; 11(4): 346-359, 2022.
Article in English | MEDLINE | ID: mdl-36041149

ABSTRACT

ABSTRACT: Corneal dystrophies represent a group of heterogeneous hereditary disorders causing progressive corneal opacification and blindness. Current corneal transplant management for corneal dystrophies faces the challenges of repeated treatments, complex surgical procedures, shortage of appropriate donor cornea, and, more importantly, graft rejection. Genetic medicine could be an alternative treatment regime to overcome such challenges. Cornea carries promising scope for a gene-based therapy involving gene supplementation, gene silencing, and gene editing in both ex vivo and in vivo platforms. In the cornea, ex vivo gene therapeutic strategies were attempted for corneal graft survival, and in vivo gene augmentation therapies aimed to prevent herpes stromal keratitis, neovascularization, corneal clouding, and wound healing. However, none of these studies followed a clinical trial-based successful outcome. CRISPR/Cas system offers a broad scope of gene editing and engineering to correct underlying genetic causes in corneal dystrophies. Corneal tissue--specific gene correction in vitro with minimal off-target effects and optimal gene correction efficiency followed by their successful surgical implantation, or in vivo CRISPR administration targeting pathogenic genes finds a way to explore therapeutic intervention for corneal dystrophies. However, there are many limitations associated with such CRISPR-based corneal treatment management. This review will look into the development of corneal gene therapy and CRISPR-based study in corneal dystrophies, associated challenges, potential approaches, and future directions.


Subject(s)
Corneal Dystrophies, Hereditary , Corneal Transplantation , Cornea/pathology , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/pathology , Corneal Dystrophies, Hereditary/therapy , Gene Editing/methods , Genetic Therapy/methods , Humans
8.
J Control Release ; 350: 494-513, 2022 10.
Article in English | MEDLINE | ID: mdl-35985493

ABSTRACT

Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.


Subject(s)
Brain Neoplasms , Glioblastoma , Alkylating Agents/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Cell Line, Tumor , Delayed-Action Preparations/therapeutic use , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Humans , Lipids/chemistry , Liposomes/therapeutic use , Nanoparticles , Polymers/therapeutic use , Temozolomide/therapeutic use , Water
9.
ACS Biomater Sci Eng ; 8(6): 2349-2362, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35522530

ABSTRACT

Triple-negative breast cancer (TNBC) cells show improved sensitivity for cisplatin therapy due to their defective DNA damage repair system. However, the clinical utilization of cisplatin is limited by dose-dependent systemic toxicities and chemoresistance. Cisplatin Pt(IV) derivatives having kinetically inert octahedral geometry provide an effective strategy to overcome these limitations. Upon cellular reduction, these derivatives release cisplatin and axial ligands, acting as dual-action prodrugs. Hereby, we have developed three cisplatin(IV) conjugates using distinct bioactive axial moieties (valproate, tocopherol, and chlorambucil), which can synergistically complement cisplatin activity and attack multiple cellular targets. The designed derivatives showcased enhanced antiproliferative activity and improved therapeutic synergism along with a noteworthy cisplatin dose reduction index in a panel of six cancer cells. These Pt(IV) derivatives remarkably improved cellular drug uptake and showed lower dependency on copper transporter 1 (Ctr1) for uptake than cisplatin. The results of enhanced in vitro activity were well corroborated by in vivo efficacy testing in the 4T1 cell-based TNBC model, showcasing ∼2-7-folds higher tumor volume reduction for Pt(IV) derivatives than cisplatin. In addition, the designed derivatives significantly reduced the nephrotoxicity risk involved in cisplatin therapy, indicated by systemic toxicity biomarkers and organ histopathology. The results indicated that cisplatin(IV) derivatives could open new avenues for safer synergistic chemotherapy in TNBC.


Subject(s)
Antineoplastic Agents , Prodrugs , Triple Negative Breast Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cisplatin/pharmacology , Cisplatin/therapeutic use , Humans , Prodrugs/pharmacology , Triple Negative Breast Neoplasms/drug therapy
10.
Mater Sci Eng C Mater Biol Appl ; 128: 112305, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474856

ABSTRACT

In spite of established evidence of the synergistic combination of hydrophobic anticancer molecule and microRNA for breast cancer treatment, their in vivo delivery has not been realized owing to their instability in the biological milieu and varied physicochemical properties. The present work reports folate targeted hybrid lipo-polymeric nanoplexes for co-delivering DTX and miR-34a. These nanoplexes exhibited a mean size of 129.3 nm with complexation efficiency at an 8:1 N/P ratio. The obtained nanoplexes demonstrated higher entrapment efficiency of DTX (94.8%) with a sustained release profile up to 85% till 48 h. Further, an improved transfection efficiency in MDA-MB-231 and 4T1 breast cancer cells was observed with uptake primarily through lipid-raft and clathrin-mediated endocytosis. Further, nanoplexes showed improved cytotoxicity (~3.5-5 folds), apoptosis (~1.6-2.0 folds), and change in expression of apoptotic genes (~4-7 folds) compared to the free treatment group in breast cancer cells. In vivo systemic administration of FA-functionalized DTX and FAM-siRNA-loaded nanoplexes showed an improved area under the curve (AUC) as well as circulation half-life compared to free DTX and naked FAM-labelled siRNA. Acute toxicity studies of the cationic polymer showed no toxicity at a dose equivalent to 10 mg/kg based on the hematological, biochemical, and histopathological examination.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , MicroRNAs/administration & dosage , Nanoparticles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Docetaxel/pharmacology , Drug Carriers/therapeutic use , Female , Folic Acid , Humans , MicroRNAs/genetics , Polymers/therapeutic use
11.
J Pharmacol Exp Ther ; 370(3): 725-735, 2019 09.
Article in English | MEDLINE | ID: mdl-31122933

ABSTRACT

CRISPR was first observed in 1987 in bacteria and archaea and was later confirmed as part of bacterial adaptive immunity against the attacking phage. The CRISPR/Cas restriction system involves a restriction endonuclease enzyme guided by a hybrid strand of RNA consisting of CRISPR RNA and trans-activating RNA, which results in gene knockout or knockin followed by nonhomologous end joining and homology-directed repair. Owing to its efficiency, specificity, and reproducibility, the CRISPR/Cas restriction system was said to be a breakthrough in the field of biotechnology. Apart from its application in biotechnology, CRISPR/Cas has been explored for its therapeutic potential in several diseases including cancer, Alzheimer's disease, sickle cell disease, Duchenne muscular dystrophy, neurologic disorders, etc., wherein CRISPR/Cas components such as Cas9/single guide RNA (sgRNA) ribonucleoprotein, sgRNA/mRNA, and plasmid were delivered. However, limitations including immunogenicity, low transfection, limited payload, instability, and off-target binding pose hurdles in its therapeutic use. Nonviral vectors (including cationic polymers, lipids, etc.), classically used as carriers for therapeutic genes, were used to deliver CRISPR/Cas components and showed interesting results. Herein, we discuss the CRISPR/Cas system and its brief history and classification, followed by its therapeutic applications using current nonviral delivery strategies.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Gene Transfer Techniques/trends , Genetic Therapy/trends , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...