Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(7): 104914, 2023 07.
Article in English | MEDLINE | ID: mdl-37315787

ABSTRACT

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR's kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR's ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR.


Subject(s)
Allosteric Regulation , Cell Membrane , ErbB Receptors , Peptides , Humans , Epidermal Growth Factor/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Structure, Secondary/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Allosteric Regulation/drug effects , Cell Membrane/chemistry , Cell Membrane/metabolism , Hydrogen-Ion Concentration , Peptides/pharmacology , Cell Movement/drug effects , Protein Domains/drug effects , Antineoplastic Agents/pharmacology
2.
Structure ; 31(6): 735-745.e2, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37075749

ABSTRACT

Structures and dynamics of transmembrane (TM) receptor regions are key to understanding their signaling mechanism across membranes. Here we examine configurations of TM region dimers, assembled using the recent Martini 3 force field for coarse-grain (CG) molecular dynamics simulations. At first glance, our results show only a reasonable agreement with ab initio predictions using PREDDIMER and AlphaFold2 Multimer and with nuclear magnetic resonance (NMR)-derived structures. 5 of 11 CG TM structures are similar to the NMR structures (within <3.5 Å root-mean-square deviation [RMSD]) compared with 10 and 9 using PREDDIMER and AlphaFold2, respectively (with 8 structures of the later within 1.5 Å). Surprisingly, AlphaFold2 predictions are closer to NMR structures when the 2001 instead of 2020 database is used for training. The CG simulations reveal that alternative configurations of TM dimers readily interconvert with a predominant population. The implications for transmembrane signaling are discussed, including for the development of peptide-based pharmaceuticals.


Subject(s)
Molecular Dynamics Simulation , Peptides
3.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34445298

ABSTRACT

Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.


Subject(s)
Cell Membrane/metabolism , Receptors, Eph Family/chemistry , Receptors, Eph Family/metabolism , Amino Acid Sequence , Animals , Cell Membrane/chemistry , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Domains/physiology
4.
J Mol Biol ; 433(18): 167144, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34229012

ABSTRACT

The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.


Subject(s)
Melanoma/pathology , Membrane Proteins/metabolism , Membranes/metabolism , Peptide Fragments/metabolism , Protein Conformation , Receptor, EphA2/metabolism , Amino Acid Sequence , Binding Sites , Cell Movement , Humans , Ligands , Melanoma/metabolism , Membrane Proteins/chemistry , Membranes/chemistry , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Protein Binding , Protein Domains , Protein Multimerization , Receptor, EphA2/chemistry , Sequence Homology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...