Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Med Chem Lett ; 15(8): 1250-1259, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39140063

ABSTRACT

Herein, we have demonstrated that the siRNA activity could be enhanced by incorporating the guide strand in the RISC complex through thermodynamic asymmetry caused by m3U-based destabilizing modifications. A nuclease stability study revealed that 2'-OMe-m3U and 2'-OEt-m3U modifications slightly improved the half-lives of siRNA strands in human serum. In the in vitro gene silencing assay, 2'-OMe-m3U modification at the 3'-overhang and cleavage site of the passenger strand in anti-renilla and anti-Bcl-2 siRNA duplexes were well-tolerated and exhibited improved gene silencing activity. However, gene silencing activity was attenuated when these modifications were incorporated at position 3 in the seed region of the antisense strand. The molecular modeling studies using these modifications at the seed region with the MID domain of hAGO2 explained that the 2'-alkoxy group makes steric interactions with the amino acid residues of the hAGO2 protein.

2.
Bioorg Med Chem ; 100: 117616, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38295488

ABSTRACT

Herein, we report the synthesis of 2'-O-alkyl/2'-fluoro-N3-methyluridine (2'-O-alkyl/2'-F-m3U) phosphoramidites and their incorporation in DNA and RNA oligonucleotides. The duplex binding affinity and base discrimination studies showed that all 2'-O-alkyl/2'-F-m3U modifications significantly decreased the thermal stability and base-pairing discrimination ability. Serum stability study of dT20 with 2'-O-alkyl-m3U modification exhibited excellent nuclease resistance when incubated with 3'-exonucleases (SVPD) or 5'-exonucleases (PDE-II) as compared to m3U, 2'-F, 2'-OMe modified oligonucleotides. MD simulation studies with RNA tetradecamer duplexes illustrated that the m3U and 2'-O-methyl-m3U modifications reduce the duplex stabilities by disrupting the Watson-Crick hydrogen bonding and base-stacking interactions. Further molecular modelling investigations demonstrated that the 2'-O-propyl-m3U modification exhibits steric interactions with amino acid residues in the active site of 3'- and 5'-exonuclease, leading to enhanced stability. These combined data indicate that the 2'-modified-m3U nucleotides can be used as a promising tool to enhance the stability, silencing efficiency, and drug-like properties of antisense/siRNA-based therapeutics.


Subject(s)
Nucleic Acids , Uridine , Exonucleases/metabolism , Nucleic Acid Conformation , Oligonucleotides/chemistry , RNA/chemistry , RNA, Small Interfering/chemistry , Uridine/analogs & derivatives , Uridine/chemistry , Uridine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL