Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(41): 9632-9641, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36214530

ABSTRACT

Dimensionality engineering in An+1BnX3n+1 Ruddlesden-Popper (RP) perovskites has recently emerged as a promising tool for tuning the band gap to improve optoelectronic properties. However, the evolution of the band gap is dependent on the material; distinguishing the effects of different factors is urgently needed to guide the rational design of high-performance materials. Through first-principles calculations, we perform a systematic investigation of RP oxide, chalcogenide, and halide perovskites. The results reveal that in addition to the confinement effect and the change in octahedral rotation motions and/or amplitudes, interfacial rumpling and a change in the A-site cation coordination number also determine the evolution of the band gap. More importantly, we emphasize that the evolution of the band gap in RP perovskites is not dependent on the material family. Instead, the B-site frontier orbital type (s, p, and d) and bandwidth, A-site cation, interfacial rumpling, and structural distortions simultaneously determine the evolution of the band gap. These insights enable a complete and deeper understanding of various experimental observations.

2.
Sci Rep ; 8(1): 12448, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30127515

ABSTRACT

Multiferroic heterostructures combining ferromagnetic and ferroelectric layers are promising for applications in novel spintronic devices, such as memories with electrical writing and magnetic reading, assuming their magnetoelectric coupling (MEC) is strong enough. For conventional magnetic metal/ferroelectric heterostructures, however, the change of interfacial magnetic moment upon reversal of the electric polarization is often very weak. Here, by using first principles calculations, we demonstrate a new pathway towards a strong MEC at the interface between the semi-hydrogenated graphene (also called graphone) and ferroelectric PbTiO3. By reversing the polarization of PbTiO3, the magnetization of graphone can be electrically switched on and off through the change of carbon-oxygen bonding at the interface. Furthermore, a ferroelectric polarization can be preserved down to ultrathin PbTiO3 layers less than one nanometer due to an enhancement of the polarization at the interface. The predicted strong magnetoelectric effect in the ultimately thin graphone/ferroelectric layers opens a new opportunity for the electric control of magnetism in high-density devices.

3.
Phys Chem Chem Phys ; 19(38): 26047-26055, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28926037

ABSTRACT

Perovskite stannates such as BaSnO3 and SrSnO3 exhibit promising photovoltaic properties, and hold promise for application in solar cell devices. However, the lack of ferroelectricity and the wide band gap in these materials limit their potential for photovoltaic applications. Here, by first-principles calculations, we demonstrate the realization of a primary ferroelectric polarization in non-ferroelectric BaSnO3 and SrSnO3 through strain engineering. In addition to the appearance of polarization, the band gaps of the materials are greatly narrowed when the paraelectric to ferroelectric phase transition takes place under compressive strain. Furthermore, an intriguing Q2 mode triggered by lattice coupling with the polar mode is found in the stannates subjected to a sufficient tensile strain and this mode has a significant effect on the band gap, which suggests another pathway to narrow the band gap through the electric field control of the Q2 mode. The fruitful electronic, structural, and energetic properties are discussed in detail to achieve a fundamental understanding of the strain-induced ferroelectricity, tunable band gap, and lattice couplings between the Q2 mode and different polar/rotational distortions in the perovskite stannates.

4.
Phys Chem Chem Phys ; 19(10): 7032-7039, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28197560

ABSTRACT

Band gap and polarization are two important quantities for enhancing the performance of photovoltaic materials. Based on first-principles calculations, we demonstrate that direct band gap and hybrid improper ferroelectric polarization coexist in BaSnO3/SrSnO3 superlattices. Furthermore, the band gap and polarization can be simultaneously tuned by mechanical strain and pressure. In the presence of tensile strain or negative pressure, the band gap is substantially lowered and the polarization is enhanced by about five times in comparison with that without mechanical loads. The lowered band gap is necessary for increasing the efficiency of light absorption, whereas the enhanced polarization is desirable for the separation of photo-excited carriers in the materials. The present work suggests that the strained BaSnO3/SrSnO3 superlattices are promising ferroelectric semiconducting materials for photovoltaic applications.

5.
Phys Chem Chem Phys ; 18(34): 24024-32, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27523881

ABSTRACT

Incipient ferroelectrics, which show a unique dielectric property, arouse tremendous interests due to their potential application in microwave dielectric devices. However, ferroelectric transition in incipient ferroelectrics is suppressed entirely by quantum fluctuation. Here, by means of first-principles calculations, we demonstrate that there exists hybrid improper ferroelectricity in a layered artificial superlattice composed of the incipient ferroelectrics of SrZrO3 and BaZrO3. The hybrid improper ferroelectric polarization stems from oxygen octahedral rotation and coexists with the strain-induced ferroelectric distortion. The coexistence of oxygen octahedral rotation and ferroelectric distortion results in an enhanced polarization in the superlattice. It is further found that the total polarization in the superlattice is mainly contributed by the oxygen octahedral rotation for zero or small strain, whereas the contribution from strain-induced ferroelectric distortion gradually becomes predominant as the strain increases. The phonon dispersion, energy surface and atomic displacements are calculated to shed light on the underlying mechanism of the hybrid improper ferroelectricity in the SrZrO3/BaZrO3 superlattice.

6.
Phys Chem Chem Phys ; 18(30): 20550-61, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27406933

ABSTRACT

Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 µB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis.

7.
J Phys Condens Matter ; 27(38): 385901, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26355914

ABSTRACT

The combination of oxygen octahedral rotation and epitaxial strain provides a unique opportunity to tune the ferroelectric properties of perovskite superlattices. Here, through first-principles calculations, we demonstrate that the oxygen octahedral rotation predominates the ground state and ferroelectric properties of SrZrO3/SrTiO3 superlattices. The predicted ground state combines the ferroelectric distortion and antiferrodistortive modes simultaneously. The structure-strain phase diagrams of the superlattices are calculated with and without octahedral rotations, which elucidate the interplay of coupling between epitaxial strain and octahedral rotation. It is found that the presence of octahedral rotation not only lowers the energy but also changes the sequence of phase transition from c-r-aa to c-r, in which the coupling of rotation and strain induces an out-of-plane polarization that transforms aa-phase into r-phase.

8.
Phys Chem Chem Phys ; 17(40): 27136-44, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26415718

ABSTRACT

Mechanical control of magnetism in perovskite oxides is an important and promising approach in spintronics. Based on the first-principles calculations, we demonstrate that a negative pressure leads to a great enhancement of magnetic moment in deficient SrTiO3 with oxygen vacancies, whereas a positive pressure results in the gradual disappearance of magnetism. Spin charge density, Bader charge analysis and electronic density of states successfully elucidate the origin and underlying physics of the enhancement and disappearance of magnetism. It is found that the split electronic states of dz(2), dyz and dzx in the 3d orbitals of Ti atoms remarkably contribute to the occupancy of majority spin states under negative pressure, which induces a large magnetic moment. Under positive pressure, however, the equal occupancy of both majority and minority t2g and eg states leads to the disappearance of magnetization. In addition, both negative and positive pressures can largely lower the vacancy formation enthalpy, suggesting that the oxygen vacancy is preferable with pressure. Our findings may provide a mechanism to achieve the pressure control of magnetization in nonmagnetic perovskite oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...