Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1288501, 2024.
Article in English | MEDLINE | ID: mdl-38559562

ABSTRACT

SKP2 (S-phase kinase-associated protein 2) is a member of the F-box family of substrate-recognition subunits in the SCF ubiquitin-protein ligase complexes. It is associated with ubiquitin-mediated degradation in the mammalian cell cycle components and other target proteins involved in cell cycle progression, signal transduction, and transcription. Being an oncogene in solid tumors and hematological malignancies, it is frequently associated with drug resistance and poor disease outcomes. In the current review, we discussed the novel role of SKP2 in different hematological malignancies. Further, we performed a limited in-silico analysis to establish the involvement of SKP2 in a few publicly available cancer datasets. Interestingly, our study identified Skp2 expression to be altered in a cancer-specific manner. While it was found to be overexpressed in several cancer types, few cancer showed a down-regulation in SKP2. Our review provides evidence for developing novel SKP2 inhibitors in hematological malignancies. We also investigated the effect of SKP2 status on survival and disease progression. In addition, the role of miRNA and its associated families in regulating Skp2 expression was explored. Subsequently, we predicted common miRNAs against Skp2 genes by using miRNA-predication tools. Finally, we discussed current approaches and future prospective approaches to target the Skp2 gene by using different drugs and miRNA-based therapeutics applications in translational research.

2.
Asian Pac J Cancer Prev ; 25(3): 747-756, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38546057

ABSTRACT

QDs are semiconductor nanocrystalline materials with distinct optical and electronic characteristics due to their microscopic size and quantum mechanical properties. They are often composed of materials such as cadmium selenide (CdSe), cadmium telluride (CdTe), or indium phosphide (InP) and are typically in the size range of 2 to 10 nanometers in diameter. These tiny particles are used in various scientific and technological applications. Some key characteristics and applications of quantum dots are size-dependent Optical Properties with tunable emission. The color of light emitted by quantum dots highly depends on their size. Smaller QDs emit blue or green light, while larger ones emit red or near-infrared light. This tunability makes them valuable in various applications, especially in molecular medicine and oncology research. Quantum dots can exhibit a high quantum yield, meaning they efficiently emit light when excited, making them excellent fluorescent probes for non-invasive imaging. This review discusses the applications of QDs and their role in biomedical research and patient care, focusing on non-invasive imaging and preventive oncology.


Subject(s)
Cadmium Compounds , Nanoparticles , Quantum Dots , Humans , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Tellurium , Nanoparticles/chemistry
3.
Infection ; 52(2): 345-384, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38270780

ABSTRACT

PURPOSE: This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS: Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS: H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION: This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.


Subject(s)
Helicobacter pylori , Peptic Ulcer , Stomach Neoplasms , Humans , Virulence/genetics , Helicobacter pylori/genetics , Peptic Ulcer/microbiology , Virulence Factors/genetics , Bacterial Proteins/genetics , Antigens, Bacterial/genetics
4.
Curr Diab Rep ; 23(8): 195-205, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37213058

ABSTRACT

PURPOSE OF REVIEW: This review aims to analyse the consistency of reports suggesting the role of Diabetes Mellitus in the pathogenesis of Helicobacter pylori (H. pylori). RECENT FINDINGS: There have been numerous controversies citing the prevalence of H. pylori infections in patients suffering from type 2 diabetes mellitus (T2DM). This review investigates the possible crosstalk between H. pylori infections and T2DM and also designs a meta-analysis to quantify the association. Subgroup analyses have also been conducted to deduce factors like geography and testing techniques, in playing a role in stratification analysis. Based on a scientific literature survey and meta-analysis of databases from 1996 to 2022, a trend towards more frequent H. pylori infections in patients with diabetes mellitus was observed. The highly diversified nature of H. pylori infections across age, gender, and geographical regions requires large interventional studies to evaluate its long-term association with diabetes mellitus. Further possible linkage of the prevalence of diabetes mellitus concomitant with that of H. pylori infected patients has also been delineated in the review.


Subject(s)
Diabetes Mellitus, Type 2 , Helicobacter Infections , Helicobacter pylori , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Helicobacter Infections/pathology , Prevalence , Causality
5.
Mol Biol Rep ; 50(5): 4517-4526, 2023 May.
Article in English | MEDLINE | ID: mdl-36842153

ABSTRACT

Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Diabetic Retinopathy/therapy , Diabetic Retinopathy/metabolism , Retina/metabolism , Pericytes/metabolism , Stem Cell Transplantation/adverse effects , Diabetes Mellitus/metabolism
6.
Metabolites ; 12(9)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36144236

ABSTRACT

Diabetes is a global epidemic, with cardiovascular disease being the leading cause of death in diabetic patients. There is a pressing need for an in vitro model to aid understanding of the mechanisms driving diabetic heart disease, and to provide an accurate, reliable tool for drug testing. Human induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have potential as a disease modelling tool. There are several factors that drive molecular changes inside cardiomyocytes contributing to diabetic cardiomyopathy, including hyperglycaemia, lipotoxicity and hyperinsulinemia. Here we discuss these factors and how they can be seen in animal models and utilised in cell culture to mimic the diabetic heart. The use of human iPSC-CMs will allow for a greater understanding of disease pathogenesis and open up new avenues for drug testing.

7.
Front Oncol ; 12: 955892, 2022.
Article in English | MEDLINE | ID: mdl-35957877

ABSTRACT

Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.

SELECTION OF CITATIONS
SEARCH DETAIL
...