Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
JCI Insight ; 7(20)2022 10 04.
Article in English | MEDLINE | ID: mdl-36194485

ABSTRACT

No disease-modifying drug exists for osteoarthritis (OA). Despite success in animal models, candidate drugs continue to fail in clinical trials owing to the unmapped interpatient heterogeneity and disease complexity. We used a single-cell platform based on cytometry by time-of-flight (cyTOF) to precisely outline the effects of candidate drugs on human OA chondrocytes. OA chondrocytes harvested from patients undergoing total knee arthroplasty were treated with 2 drugs, an NF-κB pathway inhibitor, BMS-345541, and a chondroinductive small molecule, kartogenin, that showed preclinical success in animal models for OA. cyTOF conducted with 30 metal isotope-labeled antibodies parsed the effects of the drugs on inflammatory, senescent, and chondroprogenitor cell populations. The NF-κB pathway inhibition decreased the expression of p-NF-κB, HIF2A, and inducible NOS in multiple chondrocyte clusters and significantly depleted 4 p16ink4a-expressing senescent populations, including NOTCH1+STRO1+ chondroprogenitor cells. While kartogenin also affected select p16ink4a-expressing senescent clusters, there was a less discernible effect on chondroprogenitor cell populations. Overall, BMS-345541 elicited a uniform drug response in all patients, while only a few responded to kartogenin. These studies demonstrate that a single-cell cyTOF-based drug screening platform can provide insights into patient response assessment and patient stratification.


Subject(s)
Cartilage , Drug Evaluation, Preclinical , Osteoarthritis , Humans , Cartilage/drug effects , Cartilage/metabolism , Drug Evaluation, Preclinical/methods , Homeostasis/drug effects , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Signal Transduction , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods
2.
Front Bioeng Biotechnol ; 10: 968086, 2022.
Article in English | MEDLINE | ID: mdl-36061428

ABSTRACT

Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing.

3.
J Exp Clin Cancer Res ; 41(1): 54, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135586

ABSTRACT

BACKGROUND: Molecular mechanisms underlying inflammation-associated breast tumor growth are poorly studied. S100A7, a pro-inflammatory molecule has been shown to enhance breast cancer growth and metastasis. However, the S100A7-mediated molecular mechanisms in enhancing tumor growth and metastasis are unclear. METHODS: Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3 (1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effects of S100A7/cPLA2 inhibition on the recruitment of various immune cells. RESULTS: In this study, we found that S100A7 and cPLA2 are highly expressed and correlate with decreased overall survival in breast cancer patients. Further mechanistic studies revealed that S100A7/RAGE signaling promotes the expression of cPLA2 to mediate its oncogenic effects. Pharmacological inhibition of cPLA2 suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models including transgenic and humanized patient-derived xenograft (PDX) mouse models. The attenuation of cPLA2 signaling reduced S100A7-mediated recruitment of immune-suppressive myeloid cells in the tumor microenvironment (TME). Interestingly, we discovered that the S100A7/cPLA2 axis enhances the immunosuppressive microenvironment by increasing prostaglandin E2 (PGE2). Furthermore, CO-Detection by indEXing (CODEX) imaging-based analyses revealed that cPLA2 inhibition increased the infiltration of activated and proliferating CD4+ and CD8+ T cells in the TME. In addition, CD163+ tumor associated-macrophages were positively associated with S100A7 and cPLA2 expression in malignant breast cancer patients. CONCLUSIONS: Our study provides new mechanistic insights on the cross-talk between S100A7/cPLA2 in enhancing breast tumor growth and metastasis by generating an immunosuppressive TME that inhibits the infiltration of cytotoxic T cells. Furthermore, our studies indicate that S100A7/cPLA2 could be used as novel prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing aggressive breast cancer.


Subject(s)
Breast Neoplasms/genetics , Phospholipases A2, Cytosolic/antagonists & inhibitors , S100 Calcium Binding Protein A7/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Humans , Mice , Tumor Microenvironment
4.
Tissue Eng Part A ; 28(9-10): 433-446, 2022 05.
Article in English | MEDLINE | ID: mdl-34693750

ABSTRACT

Mesenchymal stromal cells (MSCs) have been widely investigated for their regenerative capacity, anti-inflammatory properties and beneficial immunomodulatory effects across multiple clinical indications. Nevertheless, their widespread clinical utilization is limited by the variability in MSC quality, impacted by donor age, metabolism, and disease. Human induced pluripotent stem cells (hiPSCs) generated from readily accessible donor tissues, are a promising source of stable and rejuvenated MSC but differentiation methods generally require prolonged culture and result in low frequencies of stable MSCs. To overcome this limitation, we have optimized a quick and efficient method for hiPSC differentiation into footprint-free MSCs (human induced MSCs [hiMSCs]) in this study. This method capitalizes on the synergistic action of growth factors Wnt3a and Activin A with bone morphogenetic protein-4 (BMP4), leading to an enrichment of MSC after only 4 days of treatment. These hiMSCs demonstrate a significant upregulation of mesenchymal stromal markers (CD105+, CD90+, CD73, and cadherin 11) compared with bone marrow-derived MSCs (bmMSCs), with reduced expression of the pluripotency genes (octamer-binding transcription factor [Oct-4], cellular myelocytomatosis oncogene [c-Myc], Klf4, and Nanog homebox [Nanog]) compared with hiPSC. Moreover, they show improved proliferation capacity in culture without inducing any teratoma formation in vivo. Osteogenesis, chondrogenesis, and adipogenesis assays confirmed the ability of hiMSCs to differentiate into the three different lineages. Secretome analyses showed cytokine profiles compared with bmMSCs. Encapsulated hiMSCs in alginate beads cocultured with osteoarthritic (OA) cartilage explants showed robust immunomodulation, with stimulation of cell growth and proteoglycan production in OA cartilage. Our quick and efficient protocol for derivation of hiMSC from hiPSC, and their encapsulation in microbeads, therefore, presents a reliable and reproducible method to boost the clinical applications of MSCs.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Cell Differentiation , Chondrogenesis/genetics , Humans , Immunomodulation , Osteogenesis/genetics
5.
Adv Healthc Mater ; 10(8): e2002118, 2021 04.
Article in English | MEDLINE | ID: mdl-33434393

ABSTRACT

The anti-inflammatory secretome of mesenchymal stromal cells (MSCs) is lucrative for the treatment of osteoarthritis (OA), a disease characterized by low-grade inflammation. However, the precise effects of the MSC secretome on patient-derived OA tissue is lacking. To investigate these effects, alginate encapsulated MSCs are co-cultured with patient-derived OA cartilage explants for 8 days. Proteoglycan distribution in OA cartilage explants examined by Safranin O staining is markedly improved when cultured with MSC microbeads as compared to control OA explants cultured alone. Total sulfated glycosaminoglycan (sGAG) content in OA explants is significantly increased upon co-culture with MSC microbeads on day 8. The sGAG released into the culture media is unchanged by the presence of MSC microbeads, suggesting de novo sGAG synthesis in OA explants. Co-culture with MSC microbeads increased the DNA content and Ki67+ cells in OA explants, indicating proliferation. An increase in secreted cytokines IL-10, HGF, and sFAS assessed by multiplex cytokine assay, increased TIMP1 levels, and reduction in percent apoptotic cells in OA explants is noted. Together, data demonstrates that paracrine factors secreted by alginate encapsulated MSCs microbeads in response to OA cartilage, create an anabolic, proliferative, and anti-apoptotic microenvironment inducing endogenous regeneration in clinically relevant, patient-derived OA cartilage.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Cartilage , Cells, Cultured , Chondrocytes , Humans , Microspheres , Osteoarthritis/therapy , Regeneration
6.
Stem Cell Res Ther ; 11(1): 6, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31900222

ABSTRACT

BACKGROUND: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFß) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. METHODS: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. RESULTS: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. CONCLUSIONS: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS.


Subject(s)
Chondrogenesis/genetics , Mesenchymal Stem Cells/metabolism , SOX9 Transcription Factor/metabolism , Ultrasonography/methods , Humans , Mesenchymal Stem Cells/cytology , Signal Transduction
7.
Tissue Eng Part A ; 25(21-22): 1538-1549, 2019 11.
Article in English | MEDLINE | ID: mdl-31190618

ABSTRACT

Failure of the host/graft interface to integrate impedes the success of cartilage repair protocols. Continuous low-intensity ultrasound (cLIUS) at the resonant frequency of 5 MHz is proposed as a treatment modality for promoting native-to-native cartilage integration in vitro. Cylindrical incisions (4 mm) simulating chondral discontinuity were made in bovine cartilage and osteochondral explants, and maintained under cLIUS stimulation (14 kPa [5 MHz, 2.5 Vpp], 20 min, four times/day) for 28 days. Incised cartilage and osteochondral explants were categorized into three study groups; Group I: cLIUS was applied immediately upon incision; Group II: cLIUS was applied after 14 days following incision; Group-III: after 14 days following incision, explants were treated with 0.1% hyaluronidase and 30 U/mL collagenase VII. As a separate study group, incised osteochondral explants were treated immediately with cLIUS at a nonresonant frequency of 2 MHz (14 kPa [2 MHz, 6 Vpp], 20 min, four times/day). Cellular migration was analyzed by scratch assays, and by visualizing migrating cells into the hydrogel core of cartilage/hydrogel constructs. Explants under cLIUS (5 MHz) displayed higher percent apposition along with gap closures when compared with untreated controls and explants treated with cLIUS at 2 MHz. cLIUS (5 MHz)-treated explants were immunopositive for type II collagen. The strength of native-to-native cartilage integration was higher (p = 0.005) in cLIUS-treated cartilage explants at 0.19 ± 0.08 MPa as compared with 0.05 ± 0.03 MPa in untreated controls. Enhanced cartilage phenotype coupled with increased cellular migration were noted under cLIUS (5 MHz), alluding to the observed integration between cartilage interfaces. Collectively, cLIUS at cell resonant frequency promoted integrative cartilage repair, therefore, has the potential to improve cartilage repair outcomes. Impact Statement Lack of integration between the host and graft cartilage interfaces impedes the success of cartilage repair techniques. Continuous low-intensity ultrasound (cLIUS) is documented to induce chondrogenesis and chondrocyte phenotype. However, integrative cartilage repair under cLIUS has not been evaluated. Our results demonstrated integration between cartilage interfaces, increased percent apposition, increased strength of integration, and maintenance of cartilage phenotype under cLIUS (5 MHz). Integrative repair under cLIUS (5 MHz) stemmed from enhanced migration of cells and increased expression of cartilage-specific genes, namely SOX9 and COL2A1. Thus, cLIUS has the potential to improve the outcomes of grafting protocols for cartilage repair.


Subject(s)
Cartilage, Articular/diagnostic imaging , Ultrasonography , Animals , Cartilage, Articular/metabolism , Cattle , Cell Movement , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type II/metabolism , Gene Expression Regulation , Humans , Models, Biological
8.
BMC Musculoskelet Disord ; 20(1): 193, 2019 May 04.
Article in English | MEDLINE | ID: mdl-31054572

ABSTRACT

BACKGROUND: Cartilage repair outcomes are compromised in a pro-inflammatory environment; therefore, the mitigation of pro-inflammatory responses is beneficial. Treatment with continuous low-intensity ultrasound (cLIUS) at the resonant frequency of 5 MHz is proposed for the repair of chondral fissures under pro-inflammatory conditions. METHODS: Bovine osteochondral explants, concentrically incised to create chondral fissures, were maintained under cLIUS (14 kPa (5 MHz, 2.5 Vpp), 20 min, 4 times/day) for a period of 28 days in the presence or absence of cytokines, interleukin-6 (IL-6) or tumor necrosis factor (TNF)α. Outcome assessments included histological and immunohistochemical staining of the explants; and the expression of catabolic and anabolic genes by qRT-PCR in bovine chondrocytes. Cell migration was assessed by scratch assays, and by visualizing migrating cells into the hydrogel core of cartilage-hydrogel constructs. RESULTS: Both in the presence and absence of cytokines, higher percent apposition along with closure of fissures were noted in cLIUS-stimulated explants as compared to non-cLIUS-stimulated explants on day 14. On day 28, the percent apposition was not significantly different between unstimulated and cLIUS-stimulated explants exposed to cytokines. As compared to non-cLIUS-stimulated controls, on day 28, cLIUS preserved the distribution of proteoglycans and collagen II in explants despite exposure to cytokines. cLIUS enhanced the cell migration irrespective of cytokine treatment. IL-6 or TNFα-induced increases in MMP13 and ADAMTS4 gene expression was rescued by cLIUS stimulation in chondrocytes. Under cLIUS, TNFα-induced increase in NF-κB expression was suppressed, and the expression of collagen II and TIMP1 genes were upregulated. CONCLUSION: cLIUS repaired chondral fissures, and elicited pro-anabolic and anti-catabolic effects, thus demonstrating the potential of cLIUS in improving cartilage repair outcomes.


Subject(s)
Cartilage, Articular/injuries , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ultrasonic Therapy/methods , Wound Healing/radiation effects , Animals , Cartilage, Articular/cytology , Cartilage, Articular/pathology , Cartilage, Articular/radiation effects , Cattle , Cell Culture Techniques , Cell Movement/radiation effects , Cell Survival/radiation effects , Chondrocytes/metabolism , Osteochondritis/pathology , Osteochondritis/therapy , Primary Cell Culture
9.
Stem Cell Reports ; 11(2): 454-469, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30078557

ABSTRACT

Endothelial cells (ECs) are of great value for cell therapy, tissue engineering, and drug discovery. Obtaining high-quantity and -quality ECs remains very challenging. Here, we report a method for the scalable manufacturing of ECs from human pluripotent stem cells (hPSCs). hPSCs are expanded and differentiated into ECs in a 3D thermoreversible PNIPAAm-PEG hydrogel. The hydrogel protects cells from hydrodynamic stresses in the culture vessel and prevents cells from excessive agglomeration, leading to high-culture efficiency including high-viability (>90%), high-purity (>80%), and high-volumetric yield (2.0 × 107 cells/mL). These ECs (i.e., 3D-ECs) had similar properties as ECs made using 2D culture systems (i.e., 2D-ECs). Genome-wide gene expression analysis showed that 3D-ECs had higher expression of genes related to vasculature development, extracellular matrix, and glycolysis, while 2D-ECs had higher expression of genes related to cell proliferation.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Endothelial Cells/cytology , Endothelial Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Biomarkers , Cell Culture Techniques , Cell Differentiation , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , Humans , Hydrogels , Immunophenotyping , Transcriptome
10.
Biotechnol J ; 13(4): e1700382, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29283212

ABSTRACT

Human mesenchymal stem cells (hMSCs) hold great potential for cellular based therapeutics and tissue engineering applications and their expansion is an interesting prospect due to their low availability from in vivo sources. Therefore, this study investigated the effect of continuous-wave low-intensity ultrasound (LIUS) at 5.0-MHz and 14.0-kPa (<20 mW cm-2 ) on the proliferative capacity, colony-formation efficiency, genetic stability, and differentiation potential of hMSCs. Additionally, potential signaling pathways involved in LIUS-mediated proliferation of hMSCs are studied. Compared to non-stimulated controls, LIUS-treated hMSCs shows a 1.9-fold greater colony-forming efficiency and 2.5-fold higher rate of cell proliferation, respectively. Differential staining and qRT-PCR analysis for selective chondrogenic, osteogenic, and adipogenic markers further confirmed that the LIUS treatment did not impact the multipotency of hMSCs. LIUS-treated hMSCs expressed normal male karyotype. The synthesis of cyclin-D1, a master regulator of cellular proliferation, is upregulated under LIUS and its enhanced mRNA expression under LIUS is noted to be mediated by the activation of both MAPK/ERK and PI3K/AKT pathways. In conclusion, LIUS promotes proliferation and self-renewal capacity of hMSCs.


Subject(s)
Cyclin D1/genetics , Cyclin D1/metabolism , Mesenchymal Stem Cells/cytology , Up-Regulation , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cells, Cultured , Gene Expression Regulation/radiation effects , Humans , Karyotype , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Signal Transduction , Ultrasonic Waves
11.
Int J Biochem Cell Biol ; 91(Pt A): 60-64, 2017 10.
Article in English | MEDLINE | ID: mdl-28870737

ABSTRACT

The primary cilium has been implicated in mechanotransduction, however, its mechanosensory role in transducing signals under low-intensity ultrasound (LIUS) which has the potential to repair fractures and cartilage, remains uninvestigated. This study examined the impact of continuous-wave US, at the cell resonance frequency of 5.0MHz and pressure amplitude of either 14 or 60kPa, on the incidence, length and orientation of primary cilium in bovine articular chondrocytes. Visualization of primary cilium with acetylated α-tubulin staining demonstrated that the primary cilium was elongated, bent under US and these changes were reversible. Basal expression of phospho-ERK1/2 was lower in deciliated chondrocytes, thus implicating the role for the primary cilium in transducing signals via the MAPK/ERK pathway. This study demonstrates that the chondrocyte primary cilium is mechanosensitive and responds to US by altering its length and orientation.


Subject(s)
Chondrocytes/cytology , Mechanotransduction, Cellular , Ultrasonic Waves , Animals , Cattle , Chondrocytes/enzymology , Cilia/enzymology , Cilia/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism
12.
Biomed Res Int ; 2016: 7461041, 2016.
Article in English | MEDLINE | ID: mdl-27517047

ABSTRACT

Silk protein sericins, in the recent years, find application in cosmetics and pharmaceuticals and as biomaterials. We investigate the potential of sericin, extracted from both mulberry Bombyx mori and different non-mulberry sources, namely, tropical tasar, Antheraea mylitta; muga, Antheraea assama; and eri, Samia ricini, as growth supplement in serum-free culture medium. Sericin supplemented media containing different concentrations of sericins from the different species are examined for attachment, growth, proliferation, and morphology of fibrosarcoma cells. The optimum sericin supplementation seems to vary with the source of sericins. The results indicate that all the sericins promote the growth of L929 cells in serum-free culture media; however, S. ricini sericin seems to promote better growth of cells amongst other non-mulberry sericins.


Subject(s)
Bombyx/chemistry , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/metabolism , Fibroblasts/cytology , Fibroblasts/physiology , Sericins/chemistry , Animals , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Feasibility Studies , Mice , Molecular Weight , Morus , Silk/chemistry
13.
Adv Healthc Mater ; 4(11): 1709-21, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26084249

ABSTRACT

Recent years have witnessed the advancement of silk biomaterials in bone tissue engineering, although clinical application of the same is still in its infancy. In this study, the potential of pure nonmulberry Antheraea mylitta (Am) fibroin scaffold, without preloading with bone precursor cells, to repair calvarial bone defect in a rat model is explored and compared with its mulberry counterpart Bombyx mori (Bm) silk fibroin. After 3 months of implantation, Am scaffold culminates in a completely ossified regeneration with a progressive increase in mineralization at the implanted site. On the other hand, the Bm scaffold fails to repair the damaged bone, presumably due to its low osteoconductivity and early degradation. The deposition of bone matrix on scaffolds is evaluated by scanning electron and atomic force microscopy. These results are corroborated by in vitro studies of enzymatic degradation, colony formation, and secondary conformational features of the scaffold materials. The greater biocompatibility and mineralization in pure nonmulberry fibroin scaffolds warrants the use of these scaffolds as an "ideal bone graft" biomaterial for effective repair of critical size defects.


Subject(s)
Bone Regeneration , Fibroins/chemistry , Morus/chemistry , Moths/chemistry , Tissue Scaffolds , Animals , Bone Diseases/therapy , Cells, Cultured , Collagen/metabolism , Immunohistochemistry , Mesenchymal Stem Cells/cytology , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Morus/metabolism , Moths/metabolism , Osteoblasts/cytology , Osteoblasts/transplantation , Osteogenesis , Radiography , Rats , Rats, Inbred Lew , Skull/abnormalities , Skull/diagnostic imaging , Skull/pathology , Spectroscopy, Fourier Transform Infrared , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...