Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem A ; 126(40): 7110-7126, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36178932

ABSTRACT

This study aims to design a series of nonfullerene acceptors (NFAs) for photovoltaic applications having 1,4-dihydro-2,3-quinoxalinedione fused thiophene derivative as the core unit and 1,1-dicyanomethylene-3-indanone (IC) derivatives and different π-conjugated molecules other than IC as terminal acceptor units. All the investigated NFAs are found air-stable as the computed highest occupied molecular orbitals (HOMOs) are below the air oxidation threshold (ca. -5.27 eV vs saturated calomel electrode). The studied NFAs can act as potential nonfullerene acceptor candidates as they are found to have sufficient open-circuit voltage (Voc) and fill factor (FF) ranging from 0.62 to 1.41 V and 83%-91%, respectively. From the anisotropic mobility analysis, it is noticed that the studied NFAs except dicyano-rhodanine terminal unit containing NFA, exhibit better electron mobility than the hole mobility, and therefore, they can be more promising electron transporting acceptor materials in the active layer of an organic photovoltaic cell. From the optical absorption analysis, it is noted that all the designed NFAs have the maximum absorption spectra ranging from 597 nm-730 nm, which lies in the visible region and near-infrared (IR) region of the solar spectrum. The computed light-harvesting efficiencies for the PM6 (thiophene derivative donor selected in our study):NFA blends are found to lie in the range of 0.96-0.99, which indicates efficient light-harvesting by the PM6:NFA blends during photovoltaic device operation.

2.
Phys Chem Chem Phys ; 24(21): 13256-13265, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35604064

ABSTRACT

The crystal structure, charge transport and optoelectronic properties of newly designed air-stable halogenated diindenotetracene (DIT) based OSCs are reported in this article. The structural, electronic and charge transport properties of the compounds are investigated using density functional theory (DFT) formalism. The air-stability and n-type characteristics are validated from their low lying LUMO energies (<-3.9 eV) and large electron affinity (EA) values (>3.0 eV). Compared with the parent DIT, the designed DIT-X compounds (except for DIT-I) exhibit larger electronic coupling (Ve is found to be ∼1.5 times larger than that of the bare DIT) and higher electron mobilities because of the effect of electron-withdrawing groups substituted at the peripheral positions of the DIT derivatives. The designed DIT-X compounds (except DIT-I) show high electron mobilities (∼2.4-5.4 cm2 V-1 s-1), implying that the compounds can serve as promising electron transport materials. In addition, the UV-visible optical spectra of DIT derivatives (except DIT-F) display bathochromic shifts as compared to the bare DIT compound.

3.
Phys Chem Chem Phys ; 23(21): 12329-12339, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34019042

ABSTRACT

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (µe = 5.31 × 10-2 cm2 V-1 s-1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.

4.
RSC Adv ; 11(1): 57-70, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35423045

ABSTRACT

In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.

5.
J Mol Model ; 26(1): 14, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31853659

ABSTRACT

A computational study of anisotropical charge transport properties of fluorinated benzobisbenzothiohphene derivatives (FBBBT) is presented. The values of IPadia of all FBBBTs are found in the range of 6.00-6.20 eV inferring the fact that the investigated compounds have ambient air-stability. In addition, the energy levels of FBBBT s are found to be lower than those of benzobisbenzothiophene (BBBT) compound indicating higher charge carrier stability in the former. Hirshfield surface analyses showed that, in all the studied compounds, the principal identifiable interaction were mostly due to F⋯H and H⋯H intermolecular couplings with no contribution from S⋯S bondings. The calculated maximum µhole(µelec) value of the compounds FBBBT-a and FBBBT-b was found to be 0.483 (0.794) cm2V- 1s- 1 and 0.688 (0.542) cm2V- 1s- 1 respectively in the direction of transistor channel (Φ = 93.39 ∘(273.30∘) for FBBBT-a and Φ = 92.24 ∘/272.72 ∘ for FBBBT-b). For FBBBT-c, the maximum µelec(µhole) value of 0.933 (0.233) cm2V- 1s- 1 appeared for Φ = 0 ∘/179.90 ∘. In addition, the compounds FBBBT-a and FBBBT-b possess two additional fluorine atoms attached at the X positions in the backbone, which result in an increment in µelec values (1.4 times and 0.78 times higher than µhole) in these two compounds at a particular crystal direction.

6.
J Mol Model ; 25(2): 42, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30673857

ABSTRACT

A comprehensive computational study is performed on model compounds based on 2,1,3-benzochalcogenadiazoles and diketopyrrolopyrroles of A-π-A'-π-A architecture (A and A' represent 2,1,3-benzochalcogenadiazoles and diketopyrrolopyrroles, respectively, and π is the bridging unit between them including thiophene, furan, and selenophene) for their utility as organic semiconductors. The compounds were found to possess planar geometry, which is a desired property for organic semiconductors. The electronic properties, including adiabatic and vertical electron affinity (EA), adiabatic and vertical ionization potential (IP), reorganization energy (λ), hole injection barrier and electron injection barrier, transfer integral, and charge mobility, were calculated. The electron affinity is higher in the case of thiophene/selenophene as the linker for a given terminal benzochalcogenadiazole than the corresponding compounds with furan as a linker, while the ionization potential is lowest for compounds having selenophene as the linker with a given terminal benzochalcogenadiazole moiety than the compounds having furan or thiophene as a linker. The hole injection barrier in these compounds is lower than the electron injection barrier, which facilitates the hole injection from the metal electrode, while hole reorganization energy is found to be larger than the electron reorganization energy. The compounds possess hole mobilities in the range of 2.50-4.91 cm2/Vs and electron mobilities in a similar range of 4.58-9.68 cm2/Vs. This study reveals that compounds based on a combination of diketopyrrolopyrrole and 2,1,3-benzochalcogenadiazole units would exhibit hole transporting properties and act as potential ambipolar materials.

7.
Nanoscale Res Lett ; 5(4): 714-9, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20672056

ABSTRACT

In this work, we report electronic structure calculations aimed at computing the linear optical absorption spectrum and static dipole polarizablity of a newly proposed boron-based planar aromatic compound borozene (B12H6). For the purpose, we use the semiempirical INDO model Hamiltonian, accompanied by large-scale correlation calculations using the multi-reference singles-doubles configuration-interaction (MRSDCI) approach. We present detailed predictions about the energetics, polarization properties, and the nature of many-particle states contributing to various peaks in the linear absorption spectrum. Our results can be used to characterize this material in future optical absorption experiments. We also argue that one can deduce the aromaticity of the cluster from the optical absorption and static polarizability results.

SELECTION OF CITATIONS
SEARCH DETAIL