Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Article in English | MEDLINE | ID: mdl-38656317

ABSTRACT

CONTEXT: Precision medicine for pituitary neuroendocrine tumors (PitNETs) is limited by the lack of reliable research models. OBJECTIVE: To generate patient-derived organoids (PDOs), which could serve as a platform for personalized drug screening for PitNET patients. DESIGN: From July 2019 to May 2022, a total of 32 human PitNET specimens were collected for the establishment of organoids with an optimized culture protocol. SETTING: This study was conducted at Sun Yat-Sen University Cancer Center. PATIENTS: PitNET patients who were pathologically confirmed were enrolled in this study. INTERVENTIONS: Histological staining and whole-exome sequencing were utilized to confirm the pathologic and genomic features of PDOs. A drug response assay on PDOs was also performed. MAIN OUTCOME MEASURES: PDOs retained key genetic and morphological features of their parental tumors. RESULTS: PDOs were successfully established from various types of PitNET samples with an overall success rate of 87.5%. Clinical nonfunctioning PitNETs-derived organoids (22/23, 95.7%) showed a higher likelihood of successful generation compared to those from functioning PitNETs (6/9, 66.7%). Preservation of cellular structure, subtype-specific neuroendocrine profiles, mutational features, and tumor microenvironment heterogeneity from parental tumors was observed. A distinctive response profile in drug tests was observed among the organoids from patients with different subtypes of PitNETs. With the validation of key characteristics from parental tumors in histological, genomic, and microenvironment heterogeneity consistency assays, we demonstrated the predictive value of the PDOs in testing individual drugs. CONCLUSION: The established PDOs, retaining typical features of parental tumors, indicate a translational significance in innovating personalized treatment for refractory PitNETs.

2.
Phytomedicine ; 128: 155328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522316

ABSTRACT

BACKGROUND: Glioblastoma (GBM) represents as the most formidable intracranial malignancy. The systematic exploration of natural compounds for their potential applications in GBM therapy has emerged as a pivotal and fruitful avenue of research. PURPOSE: In the present study, a panel of 96 diterpenoids was systematically evaluated as a repository of potential antitumour agents. The primary objective was to discern their potency in overcoming resistance to temozolomide (TMZ). Through an extensive screening process, honatisine, a heptacyclic diterpenoid alkaloid, emerged as the most robust candidate. Notably, honatisine exhibited remarkable efficacy in patient-derived primary and recurrent GBM strains. Subsequently, we subjected this compound to comprehensive scrutiny, encompassing GBM cultured spheres, GBM organoids (GBOs), TMZ-resistant GBM cell lines, and orthotopic xenograft mouse models of GBM cells. RESULTS: Our investigative efforts delved into the mechanistic underpinnings of honatisine's impact. It was discerned that honatisine prompted mitonuclear protein imbalance and elicited the mitochondrial unfolded protein response (UPRmt). This effect was mediated through the selective depletion of mitochondrial DNA (mtDNA)-encoded subunits, with a particular emphasis on the diminution of mitochondrial transcription factor A (TFAM). The ultimate outcome was the instigation of deleterious mitochondrial dysfunction, culminating in apoptosis. Molecular docking and surface plasmon resonance (SPR) experiments validated honatisine's binding affinity to TFAM within its HMG-box B domain. This binding may promote phosphorylation of TFAM and obstruct the interaction of TFAM bound to heavy strand promoter 1 (HSP1), thereby enhancing Lon-mediated TFAM degradation. Finally, in vivo experiments confirmed honatisine's antiglioma properties. Our comprehensive toxicological assessments underscored its mild toxicity profile, emphasizing the necessity for a thorough evaluation of honatisine as a novel antiglioma agent. CONCLUSION: In summary, our data provide new insights into the therapeutic mechanisms underlying honatisine's selective inducetion of apoptosis and its ability to overcome chemotherapy resistance in GBM. These actions are mediated through the disruption of mitochondrial proteostasis and function, achieved by the inhibition of TFAM-mediated mtDNA transcription. This study highlights honatisine's potential as a promising agent for glioblastoma therapy, underscoring the need for further exploration and investigation.


Subject(s)
DNA, Mitochondrial , Diterpenes , Drug Resistance, Neoplasm , Glioblastoma , Temozolomide , Transcription Factors , Glioblastoma/drug therapy , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Temozolomide/pharmacology , Cell Line, Tumor , Diterpenes/pharmacology , Transcription Factors/metabolism , Mice , DNA, Mitochondrial/drug effects , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Xenograft Model Antitumor Assays , Brain Neoplasms/drug therapy , Transcription, Genetic/drug effects , Mice, Nude
3.
BMC Cancer ; 24(1): 118, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262954

ABSTRACT

BACKGROUND: Observational studies have explored the association of psychiatric disorders and the risk of brain cancers. However, the causal effect of specific mental illness on glioma remains elusive due to the lack of solid evidence. METHODS: We performed a two-sample bidirectional Mendelian randomization (MR) analysis to explore the causal relationships between 5 common psychiatric disorders (schizophrenia, major depressive disorder, bipolar disorder, autism spectrum disorder, and panic disorder) and glioma. Summary statistics for psychiatric disorders and glioma were extracted from Psychiatric Genomics Consortium (PGC) and 8 genome-wide association study (GWAS) datasets respectively. We calculated the MR estimates for odds ratio of glioma associated with each psychiatric disorder by using inverse-variance weighting (IVW) method. Sensitivity analyses such as weighted median estimator, MR-Egger and MR-PRESSO were leveraged to assess the strength of causal inference. RESULTS: A total of 30,657 participants of European ancestry were included in this study. After correction for multiple testing, we found that genetically predicted schizophrenia was associated with a statistically significant increase in odds of non-glioblastoma multiforme (non-GBM) (OR = 1.13, 95% CI: 1.03-1.23, P = 0.0096). There is little evidence for the causal relationships between the other 4 psychiatric disorders with the risk of glioma. CONCLUSIONS: In this MR analysis, we revealed an increased risk of non-GBM glioma in individuals with schizophrenia, which gives an insight into the etiology of glioma.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Glioma , Mental Disorders , Humans , Mendelian Randomization Analysis , Genome-Wide Association Study
4.
BMC Med ; 21(1): 487, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38053181

ABSTRACT

BACKGROUND: Glioma is one of the leading types of brain tumor, but few etiologic factors of primary glioma have been identified. Previous observational research has shown an association between viral infection and glioma risk. In this study, we used Mendelian randomization (MR) analysis to explore the direction and magnitude of the causal relationship between viral infection and glioma. METHODS: We conducted a two-sample bidirectional MR analysis using genome-wide association study (GWAS) data. Summary statistics data of glioma were collected from the largest meta-analysis GWAS, involving 12,488 cases and 18,169 controls. Single-nucleotide polymorphisms (SNPs) associated with exposures were used as instrumental variables to estimate the causal relationship between glioma and twelve types of viral infections from corresponding GWAS data. In addition, sensitivity analyses were performed. RESULTS: After correcting for multiple tests and sensitivity analysis, we detected that genetically predicted herpes zoster (caused by Varicella zoster virus (VZV) infection) significantly decreased risk of low-grade glioma (LGG) development (OR = 0.85, 95% CI: 0.76-0.96, P = 0.01, FDR = 0.04). No causal effects of the other eleven viral infections on glioma and reverse causality were detected. CONCLUSIONS: This is one of the first and largest studies in this field. We show robust evidence supporting that genetically predicted herpes zoster caused by VZV infection reduces risk of LGG. The findings of our research advance understanding of the etiology of glioma.


Subject(s)
Glioma , Herpes Zoster , Virus Diseases , Humans , Genome-Wide Association Study , Glioma/epidemiology , Glioma/genetics , Mendelian Randomization Analysis
5.
Cell Death Dis ; 14(2): 142, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36805688

ABSTRACT

Differentiation therapy using small molecules is a promising strategy for improving the prognosis of glioblastoma (GBM). Histone acetylation plays an important role in cell fate determination. Nevertheless, whether histone acetylation in specific sites determines GBM cells fate remains to be explored. Through screening from a 349 small molecule-library, we identified that histone deacetylase inhibitor (HDACi) MS-275 synergized with 8-CPT-cAMP was able to transdifferentiate U87MG GBM cells into neuron-like cells, which were characterized by cell cycle arrest, rich neuron biomarkers, and typical neuron electrophysiology. Intriguingly, acetylation tags of histone 3 at lysine 9 (H3K9ac) were decreased in the promoter of multiple oncogenes and cell cycle genes, while ones of H3K9ac and histone 3 at lysine 14 (H3K14ac) were increased in the promoter of neuron-specific genes. We then compiled a list of genes controlled by H3K9ac and H3K14ac, and proved that it is a good predictive power for pathologic grading and survival prediction. Moreover, cAMP agonist combined with HDACi also induced glioma stem cells (GSCs) to differentiate into neuron-like cells through the regulation of H3K9ac/K14ac, indicating that combined induction has the potential for recurrence-preventive application. Furthermore, the combination of cAMP activator plus HDACi significantly repressed the tumor growth in a subcutaneous GSC-derived tumor model, and temozolomide cooperated with the differentiation-inducing combination to prolong the survival in an orthotopic GSC-derived tumor model. These findings highlight epigenetic reprogramming through H3K9ac and H3K14ac as a novel approach for driving neuron-fate-induction of GBM cells.


Subject(s)
Glioblastoma , Glioma , Humans , Acetylation , Histones , Lysine , Glioma/drug therapy , Glioma/genetics , Histone Deacetylase Inhibitors/pharmacology
6.
BMC Cancer ; 23(1): 8, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36597096

ABSTRACT

OBJECTIVE: To explore the histopathological characteristics of paired recurrent gliomas and their clinical significance. METHODS: Glioma patients who received both primary surgery and reoperation when recurrence at Sun Yat-sen University Cancer Center from June 2001 to June 2019 were enrolled. Clinical and pathological characteristics were analyzed retrospectively, and histopathology of reoperation specimens was divided into three categories according to tumor cell activity and the degree of necrosis: active group, low-activity group, and necrosis group. RESULTS: A total of 89 patients were included in this study. The 2016 WHO grade of the first operation pathology and IDH1 status were related to survival time after the first operation, but there was no significant association with survival time after reoperation. The time interval between primary and reoperation was shorter for primary high-grade glioma and/or IDH1 wild-type tumor patients than for low-grade glioma and/or IDH1 mutant tumor patients (P < 0.001). Histopathological types of recurrent gliomas were analyzed, and 67 cases (75.3%) were classified into the active group, 14 (15.8%) into the low-activity group, and 8 (8.9%) into the necrosis group. The low-activity or necrosis group was associated with a higher radiotherapy dose and shorter operation interval. Further univariate and multivariate Cox survival analyses showed the histopathological patterns of recurrent gliomas to be related to survival time after reoperation. CONCLUSION: Primary WHO low grade or IDH1 mutant gliomas appeared survival benefit mainly on later recurrence, but was not a prognostic predictor following recurrence. Histopathological feature of recurrent glioma is related to previous treatment, including radiotherapy dosage and chemotherapy treatment, and is also an important independent prognostic factor for patients after reoperation.


Subject(s)
Brain Neoplasms , Glioma , Humans , Cohort Studies , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/metabolism , Retrospective Studies , Clinical Relevance , Glioma/genetics , Glioma/surgery , Glioma/drug therapy , Prognosis , Necrosis , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation
7.
JAMA Netw Open ; 6(1): e2253285, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36705923

ABSTRACT

Importance: High-grade gliomas (HGGs) constitute the most common and aggressive primary brain tumor, with 5-year survival rates of 30.9% for grade 3 gliomas and 6.6% for grade 4 gliomas. The add-on efficacy of interferon alfa is unclear for the treatment of HGG. Objectives: To compare the therapeutic efficacy and toxic effects of the combination of temozolomide and interferon alfa and temozolomide alone in patients with newly diagnosed HGG. Design, Setting, and Participants: This multicenter, randomized, phase 3 clinical trial enrolled 199 patients with newly diagnosed HGG from May 1, 2012, to March 30, 2016, at 15 Chinese medical centers. Follow-up was completed July 31, 2021, and data were analyzed from September 13 to November 24, 2021. Eligible patients were aged 18 to 75 years with newly diagnosed and histologically confirmed HGG and had received no prior chemotherapy, radiotherapy, or immunotherapy for their HGG. Interventions: All patients received standard radiotherapy concurrent with temozolomide. After a 4-week break, patients in the temozolomide with interferon alfa group received standard temozolomide combined with interferon alfa every 28 days. Patients in the temozolomide group received standard temozolomide. Main Outcomes and Measures: The primary end point was 2-year overall survival (OS). Secondary end points were 2-year progression-free survival (PFS) and treatment tolerability. Results: A total of 199 patients with HGG were enrolled, with a median follow-up time of 66.0 (95% CI, 59.1-72.9) months. Seventy-nine patients (39.7%) were women and 120 (60.3%) were men, with ages ranging from 18 to 75 years and a median age of 46.9 (95% CI, 45.3-48.7) years. The median OS of patients in the temozolomide plus interferon alfa group (26.7 [95% CI, 21.6-31.7] months) was significantly longer than that in the standard group (18.8 [95% CI, 16.9-20.7] months; hazard ratio [HR], 0.64 [95% CI, 0.47-0.88]; P = .005). Temozolomide plus interferon alfa also significantly improved median OS in patients with O6-methylguanine-DNA methyltransferase (MGMT) unmethylation (24.7 [95% CI, 20.5-28.8] months) compared with temozolomide (17.4 [95% CI, 14.1-20.7] months; HR, 0.57 [95% CI, 0.37-0.87]; P = .008). Seizure and influenzalike symptoms were more common in the temozolomide plus interferon alfa group, with 2 of 100 (2.0%) and 5 of 100 (5.0%) patients with grades 1 and 2 toxic effects, respectively (P = .02). Finally, results suggested that methylation level at the IFNAR1/2 promoter was a marker of sensitivity to temozolomide plus interferon alfa. Conclusions and Relevance: Compared with the standard regimen, temozolomide plus interferon alfa treatment could prolong the survival time of patients with HGG, especially the MGMT promoter unmethylation variant, and the toxic effects remained tolerable. Trial Registration: ClinicalTrials.gov Identifier: NCT01765088.


Subject(s)
Brain Neoplasms , Glioma , Female , Humans , Male , Middle Aged , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Dacarbazine/therapeutic use , Glioma/drug therapy , Interferon-alpha/therapeutic use , Temozolomide/therapeutic use , Adolescent , Young Adult , Adult , Aged
8.
J Neurosurg ; : 1-10, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36461822

ABSTRACT

OBJECTIVE: The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS: In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS: The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS: The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.

9.
Int J Clin Oncol ; 27(9): 1386-1393, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35781641

ABSTRACT

BACKGROUND: Cancer patients are associated with an elevated risk of suicide. This study aims to investigate the suicide rates and identify risk factors for suicide among patients with malignant intracranial tumors (MITs). METHODS: Patients diagnosed with MITs during the years of 1975-2015 were identified from the Surveillance, Epidemiology, and End Results (SEER) program. Suicide rates and standardized mortality ratios (SMR) were calculated. Cox regression analyses were used to identified risk factors for suicide among MIT patients. RESULTS: Among 115,668 patients with MITs collected from the SEER program, 99 committed suicide. The rate of suicide was 23.02 per 100,000 person-years, and SMR of suicide was 1.90. Diagnosis in recent era (years 2000-2015, SMR = 2.01), male gender (SMR = 1.78), older age (60-79 years, SMR = 3.54), white race (SMR = 1.86), married persons (SMR = 2.31), living in rural areas (SMR = 2.50), history of other malignancy (SMR = 3.81), diagnosis of glioblastoma (SMR = 4.05) and supratentorial location (SMR = 2.45) were associated with an increased incidence of suicide. In addition, the risk of suicide increased significantly within the first year after diagnosis (SMR = 13.04). Multivariate Cox regressions showed that older age, male sex, and supratentorial location were independent risk factors for suicide. CONCLUSIONS: The suicide mortality among patients with MITs steadily elevated in the past decades. Male sex, older age, and supratentorial location were significantly associated with risk of suicide, especially within the first year following diagnosis. Healthcare providers should early identify and effectively intervene with MIT patients at risk.


Subject(s)
Brain Neoplasms , Suicide , Brain Neoplasms/epidemiology , Humans , Incidence , Male , Risk Factors , SEER Program
10.
Cell Death Dis ; 13(5): 493, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610201

ABSTRACT

Accumulating evidence supports the existence of glioma stem cells (GSCs) and their critical role in the resistance to conventional treatments for glioblastoma multiforme (GBM). Differentiation therapy represents a promising alternative strategy against GBM by forcing GSCs to exit the cell cycle and reach terminal differentiation. In this study, we demonstrated that cAMP triggered neuronal differentiation and compromised the self-renewal capacity in GSCs. In addition, cAMP induced negative feedback to antagonize the differentiation process by activating ß-catenin pathway. Suppression of ß-catenin signaling synergized with cAMP activators to eliminate GSCs in vitro and extended the survival of animals in vivo. The cAMP/PKA pathway stabilized ß-catenin through direct phosphorylation of the molecule and inhibition of GSK-3ß. The activated ß-catenin translocated into the nucleus and promoted the transcription of APELA and CARD16, which were found to be responsible for the repression of cAMP-induced differentiation in GSCs. Overall, our findings identified a negative feedback mechanism for cAMP-induced differentiation in GSCs and provided potential targets for the reinforcement of differentiation therapy for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Feedback , Glioblastoma/metabolism , Glioma/genetics , Glioma/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Neoplastic Stem Cells/metabolism , beta Catenin/metabolism
11.
Oncoimmunology ; 11(1): 2059874, 2022.
Article in English | MEDLINE | ID: mdl-35402080

ABSTRACT

Lung cancer is one of the most common causes of brain metastases and is always associated with poor prognosis. We investigated the immunophenotypes of primary lung tumors and paired brain metastases, as well as immunophenotypes in the synchronous group (patients with brain metastases upon initial diagnosis) and metachronous group (patients developed brain metastases during the course of their disease). RNA sequencing of eighty-six samples from primary lung tumors and paired brain metastases of 43 patients was conducted to analyze the tumor immune microenvironment. Our data revealed that matched brain metastases compared with primary lung tumors exhibited reduced tumor infiltrating lymphocytes (TILs), a higher fraction of neutrophils infiltration, decreased scores of immune-related signatures, and a lower proportion of tumor microenvironment immune type I (high PD-L1/high CD8A) tumors. Additionally, we found a poor correlation of PD-L1 expression between paired brain metastases and primary lung tumors. In addition, gene set enrichment analysis (GSEA) showed that some gene sets associated with the immune response were enriched in the metachronous group, while other gene sets associated with differentiation and metastasis were enriched in the synchronous group in the primary lung tumors. Moreover, the tumor immune microenvironment between paired brain metastases and primary lung tumors displayed more differences in the metachronous group than in the synchronous group. Our work illustrates that brain metastatic tumors are more immunosuppressed than primary lung tumors, which may help guide immunotherapeutic strategies for NSCLC brain metastases.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Tumor Microenvironment , B7-H1 Antigen/metabolism , Brain/metabolism , Brain/pathology , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Tumor Microenvironment/immunology
12.
Signal Transduct Target Ther ; 7(1): 100, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35393389

ABSTRACT

Over the last decade, oncolytic virus (OV) therapy has shown its promising potential in tumor treatment. The fact that not every patient can benefit from it highlights the importance for defining biomarkers that help predict patients' responses. As particular self-amplifying biotherapeutics, the anti-tumor effects of OVs are highly dependent on the host factors for viral infection and replication. By using weighted gene co-expression network analysis (WGCNA), we found matrix remodeling associated 8 (MXRA8) is positively correlated with the oncolysis induced by oncolytic virus M1 (OVM). Consistently, MXRA8 promotes the oncolytic efficacy of OVM in vitro and in vivo. Moreover, the interaction of MXRA8 and OVM studied by single-particle cryo-electron microscopy (cryo-EM) showed that MXRA8 directly binds to this virus. Therefore, MXRA8 acts as the entry receptor of OVM. Pan-cancer analysis showed that MXRA8 is abundant in most solid tumors and is highly expressed in tumor tissues compared with adjacent normal ones. Further study in cancer cell lines and patient-derived tumor tissues revealed that the tumor selectivity of OVM is predominantly determined by a combinational effect of the cell membrane receptor MXRA8 and the intracellular factor, zinc-finger antiviral protein (ZAP). Taken together, our study may provide a novel dual-biomarker for precision medicine in OVM therapy.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Cryoelectron Microscopy , Humans , Immunoglobulins , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Oncolytic Viruses/genetics
13.
Lab Invest ; 102(7): 702-710, 2022 07.
Article in English | MEDLINE | ID: mdl-35013530

ABSTRACT

Although there have been recent advances in the molecular pathology of ependymomas, little is known about the underlying molecular evolution during its development. Here, we assessed the clinical, pathological and molecular evolutionary process of ependymoma recurrence in a 9-year-old patient who had seven recurrences of supratentorial ependymoma and died from intracranial multiregional recurrences at the age of 19 years old. Whole-genome sequencing (WGS) of 7 tumor samples (1 primary and 6 subsequent recurrent tumors) was performed to elucidate the mutation landscape and identify potential driver mutations for tumor evolution. The genetic profiles of the seven tumor specimens showed significant heterogeneity and suggested a highly branched evolutionary pattern. The mutational signatures and chromothripsis changed with treatments. Strikingly, adhesion G protein-coupled receptor L3 (ADGRL3, also known as Latrophilins 3, LPNH3) was found to be consistently mutated during the entire disease process. However, Sanger sequencing of other 78 ependymoma patients who underwent surgery at our institution showed no genetic alteration of ADGRL3, as found in the present case. The mRNA levels of ADGRL3 were significantly lower in ependymomas (n = 36), as compared with normal brain tissue (n = 3). Grade III ependymomas had the lowest ADGRL3 expression. Moreover, ependymomas with lower mRNA level of ADGRL3 had shorter overall survival. Our findings, therefore, demonstrate a rare evolutionary process of ependymoma involving ADGRL3.


Subject(s)
Ependymoma , Adult , Child , Ependymoma/genetics , Ependymoma/pathology , Ependymoma/surgery , Humans , Mutation , RNA, Messenger , Receptors, G-Protein-Coupled/genetics , Young Adult
14.
Oncogene ; 41(11): 1550-1562, 2022 03.
Article in English | MEDLINE | ID: mdl-35091683

ABSTRACT

CircRNAs play important roles in a variety of biological processes by acting as microRNA sponges and protein scaffolds or by encoding functional proteins. However, their functions and underlying mechanisms remain largely unknown. Distinctive circRNA patterns were explored by comparing nonfunctioning pituitary adenomas (NFPAs) and normal pituitary tissues with a circRNA array. The biological functions of selected circRNAs were determined in vitro and in vivo. RNA-seq and circRNA pulldown assays were applied to investigate the underlying mechanisms. The circRNA profile of NFPAs is tremendously different from that of normal pituitary tissues. CircVPS13C is significantly upregulated in NFPA samples and cell lines. Gain- and loss-of-function experiments demonstrate that silencing circVPS13C inhibits the proliferation of pituitary tumor cells in vitro and in vivo. Mechanistically, circVPS13C silencing increases the expression of IFITM1 and subsequently activates its downstream genes involved in MAPK- and apoptosis-associated signaling pathways. Rescue experiments show that IFITM1 overexpression partly reverses the biological effects of circVPS13C. Further studies reveal that circVPS13C inhibits IFITM1 expression through a novel mechanism mainly by competitively interacting with RRBP1, a ribosome-binding protein of the endoplasmic reticulum membrane, and thereby alleviating the stability of IFITM1 mRNA. Clinically, circVPS13C expression is markedly higher in high-risk NFPA samples and is downregulated in patient serum 7 days post-transsphenoidal adenoma resection. Our findings suggest that circVPS13C is a critical regulator in the proliferation and development of NFPAs through a novel mechanism, whereby regulating mRNA stability via interacting with ribosome-binding proteins on the endoplasmic reticulum membrane.


Subject(s)
Adenoma , Biological Phenomena , Pituitary Neoplasms , Adenoma/metabolism , Humans , Pituitary Neoplasms/pathology , RNA, Circular , RNA, Messenger/genetics
15.
Comput Struct Biotechnol J ; 19: 3077-3086, 2021.
Article in English | MEDLINE | ID: mdl-34136106

ABSTRACT

The secreting function of pituitary adenomas (PAs) plays a critical role in making the treatment strategies. However, Magnetic Resonance Imaging (MRI) analysis for pituitary adenomas is labor intensive and highly variable among radiologists. In this work, by applying convolutional neural network (CNN), we built a segmentation and classification model to help distinguish functioning pituitary adenomas from non-functioning subtypes with 3D MRI images from 185 patients with PAs (two centers). Specifically, the classification model adopts the concept of transfer learning and uses the pre-trained segmentation model to extract deep features from conventional MRI images. As a result, both segmentation and classification models obtained high performance in two internal validation datasets and an external testing dataset (for segmentation model: Dice score = 0.8188, 0.8091 and 0.8093 respectively; for classification model: AUROC = 0.8063, 0.7881 and 0.8478, respectively). In addition, the classification model considers the attention mechanism for better model interpretation. Taken together, this work provides the first deep learning-based tumor region segmentation and classification models of PAs, which enables early diagnosis and subtyping PAs from MRI images.

16.
BMC Med Imaging ; 21(1): 92, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059015

ABSTRACT

BACKGROUND: Differential diagnosis of tumour recurrence (TuR) from treatment effects (TrE), mostly induced by radiotherapy and chemotherapy, is still difficult by using conventional computed tomography (CT) or magnetic resonance (MR) imaging. We have investigated the diagnostic performance of PET/CT with 3 tracers, 13N-NH3, 18F-FDOPA, and 18F-FDG, to identify TuR and TrE in glioma patients following treatment. METHODS: Forty-three patients with MR-suspected recurrent glioma were included. The maximum and mean standardized uptake values (SUVmax and SUVmean) of the lesion and the lesion-to-normal grey-matter cortex uptake (L/G) ratio were obtained from each tracer PET/CT. TuR or TrE was determined by histopathology or clinical MR follow-up for at least 6 months. RESULTS: In this cohort, 34 patients were confirmed to have TuR, and 9 patients met the diagnostic standard of TrE. The SUVmax and SUVmean of 13N-NH3 and 18F-FDOPA PET/CT at TuR lesions were significantly higher compared with normal brain tissue (13N-NH3 0.696 ± 0.558, 0.625 ± 0.507 vs 0.486 ± 0.413; 18F-FDOPA 0.455 ± 0.518, 0.415 ± 0.477 vs 0.194 ± 0.203; both P < 0.01), but there was no significant difference in 18F-FDG (6.918 ± 3.190, 6.016 ± 2.807 vs 6.356 ± 3.104, P = 0.290 and 0.493). L/G ratios of 13N-NH3 and 18F-FDOPA were significantly higher in TuR than in TrE group (13N-NH3, 1.573 ± 0.099 vs 1.025 ± 0.128, P = 0.008; 18F-FDOPA, 2.729 ± 0.131 vs 1.514 ± 0.141, P < 0.001). The sensitivity, specificity and AUC (area under the curve) by ROC (receiver operating characteristic) analysis were 57.7%, 100% and 0.803, for 13N-NH3; 84.6%, 100% and 0.938, for 18F-FDOPA; and 80.8%, 100%, and 0.952, for the combination, respectively. CONCLUSION: Our results suggest that although multiple tracer PET/CT may improve differential diagnosis efficacy, for glioma TuR from TrE, 18F-FDOPA PET-CT is the most reliable. The combination of 18F-FDOPA and 13N-NH3 does not increase the diagnostic efficiency, while 18F-FDG is not worthy for differential diagnosis of glioma TuR and TrE.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Neoplasm Recurrence, Local/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Adolescent , Adult , Aged , Ammonia/pharmacokinetics , Brain/diagnostic imaging , Brain/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Dihydroxyphenylalanine/analogs & derivatives , Dihydroxyphenylalanine/pharmacokinetics , Disease Progression , Female , Fluorine Radioisotopes/pharmacokinetics , Fluorodeoxyglucose F18/pharmacokinetics , Glioma/metabolism , Glioma/therapy , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Nitrogen Radioisotopes/pharmacokinetics , ROC Curve , Sensitivity and Specificity , Treatment Outcome , Young Adult
17.
Front Cell Dev Biol ; 9: 653240, 2021.
Article in English | MEDLINE | ID: mdl-33796538

ABSTRACT

BACKGROUND: Proteins containing the caspase recruitment domain (CARD) play critical roles in cell apoptosis and immunity. However, the impact of CARD genes in tumor immune cell infiltration, responsiveness to checkpoint immunotherapy, and clinical outcomes of gliomas remains unclear. Here, we explore using CARD genes to depict the immune microenvironment and predict the responsiveness of gliomas to anti-PD-1 therapy. METHODS: The genome and transcriptome data of 231 patients with isocitrate dehydrogenase wild-type (IDH-wt) gliomas were retrieved from The Cancer Genome Atlas (TCGA) database to screen CARD genes associated with T lymphocyte infiltration in gliomas. Weighted co-expression network and LASSO penalized regression were employed to generate a CARD-associated risk score (CARS). Two independent and publicly available datasets were used to validate the effectiveness of CARS. RESULTS: The CARS divided the 231 glioma patients into high- and low-risk subgroups with distinct immune microenvironment and molecular features. The high-risk group had high CARS and was characterized by enrichment of dysfunctional T lymphocytes in a profound immunosuppressive microenvironment, whereas the low-risk group had low CARS and exhibited an immune exclusion genotype. Moreover, signaling aberrations including upregulation of PI3K/Akt/mTOR, NF-κB, and TGF-ß were found in the high-risk group. In contrast, the activated WNT pathway was more evident in the low-risk group. Furthermore, we found that an elevated CARS indicated a decreased overall survival for IDH-wt gliomas under standard care but a clinical benefit from checkpoint immunotherapy. CONCLUSION: This study developed an immune- and prognosis-relevant risk score, which could be used to enhance our understanding of the heterogeneity of immune microenvironment of gliomas and facilitate to identify patients who will benefit from checkpoint immunotherapy.

18.
Am J Cancer Res ; 11(2): 458-478, 2021.
Article in English | MEDLINE | ID: mdl-33575081

ABSTRACT

Activation of the cyclic adenosine monophosphate (cAMP) pathway induces the glial differentiation of glioblastoma (GBM) cells, but the fate of differentiated cells remains poorly understood. Transcriptome analyses have revealed significant changes in the cell cycle- and senescence-related pathways in differentiated GBM cells induced by dibutyryl cAMP (dbcAMP). Further investigations showed that reactive oxygen species (ROS) derived from enhanced mitochondrial function are involved in senescence induction and proliferation inhibition. Moreover, we found that IL-6 from dbcAMP- or temozolomide (TMZ)-induced senescent cells facilitates the glycolytic phenotype of GBM cells and that inhibiting the IL-6-related pathway hinders the proglycolytic effect of either agent. In patient-derived GBM xenograft models, a specific antibody targeting the IL-6 receptor tocilizumab (TCZ) significantly prolongs the survival time of TMZ-treated mice. Taken together, these results suggest that both the differentiation-inducing agent dbcAMP and the chemotherapy drug TMZ are able to drive GBM cells to senescence, and the latter releases IL-6 to potentiate glycolysis, suggesting that IL-6 is a target for adjuvant chemotherapy in GBM treatment.

19.
Clin Lung Cancer ; 22(1): e25-e34, 2021 01.
Article in English | MEDLINE | ID: mdl-32839132

ABSTRACT

BACKGROUND: The treatment options for newly diagnosed non-small-cell lung cancer (NSCLC) patients with 1 to 3 synchronous brain metastases (BM) remain controversial. The current study aimed to comprehensively analyze the characteristics, local treatment paradigms, and survival outcomes in these populations. PATIENTS AND METHODS: A total of 252 NSCLC patients initially diagnosed with 1 to 3 synchronous brain-only metastases were enrolled onto this study. Local therapy (LT) to primary lung tumors (PLT) and BM included surgery, radiotherapy, or both. Median overall survival (mOS) was measured among patients who received LT to both PLT and BM (all-LT group), patients who were treated with LT to either PLT or BM (part-LT group), and patients who did not receive any LT (non-LT group). RESULTS: The mOS for all-LT (n = 70), part-LT (n = 113), and non-LT (n = 69) groups was 33.2, 18.5, and 16.8 months, respectively (P = .002). The OS rates at 5 years for the all-LT, part-LT, and non-LT groups were 25.5%, 16.2%, and 0, respectively. Multivariable analysis revealed that all-LT versus non-LT, pretreatment Karnofsky performance status > 70, histology of adenocarcinoma, thoracic stage I-II, EGFR mutation, ALK positive, and second-line systemic therapies were independent prognostic factors for improved mOS. CONCLUSIONS: The current study showed that LT for both PLT and BM is associated with superior OS in appropriately selected NSCLC patients initially diagnosed with 1 to 3 synchronous BM. Prospective trials are urgently needed to confirm this finding.


Subject(s)
Adenocarcinoma of Lung/therapy , Brain Neoplasms/therapy , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Squamous Cell/therapy , Lung Neoplasms/therapy , Neoplasms, Multiple Primary/therapy , Adenocarcinoma of Lung/pathology , Adult , Aged , Aged, 80 and over , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Combined Modality Therapy , Disease Management , Female , Follow-Up Studies , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasms, Multiple Primary/secondary , Prognosis , Retrospective Studies , Survival Rate , Young Adult
20.
Cancer Lett ; 499: 60-72, 2021 02 28.
Article in English | MEDLINE | ID: mdl-33166616

ABSTRACT

To follow the revision of the fourth edition of WHO classification and the recent progress on the management of diffuse gliomas, the joint guideline committee of Chinese Glioma Cooperative Group (CGCG), Society for Neuro-Oncology of China (SNO-China) and Chinese Brain Cancer Association (CBCA) updated the clinical practice guideline. It provides recommendations for diagnostic and management decisions, and for limiting unnecessary treatments and cost. The recommendations focus on molecular and pathological diagnostics, and the main treatment modalities of surgery, radiotherapy, and chemotherapy. In this guideline, we also integrated the results of some clinical trials of immune therapies and target therapies, which we think are ongoing future directions. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China and other countries.


Subject(s)
Brain Neoplasms/therapy , Chemoradiotherapy, Adjuvant/standards , Glioma/therapy , Neurosurgical Procedures/standards , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Brain/diagnostic imaging , Brain/pathology , Brain/surgery , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Chemoradiotherapy, Adjuvant/methods , China/epidemiology , Dose Fractionation, Radiation , Glioma/diagnosis , Glioma/genetics , Glioma/mortality , Humans , Magnetic Resonance Imaging , Medical Oncology/organization & administration , Medical Oncology/standards , Mutation , Neoplasm Grading , Neurology/organization & administration , Neurology/standards , Neurosurgical Procedures/methods , Progression-Free Survival , Radiotherapy Planning, Computer-Assisted , Societies, Medical/standards , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...