Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 184: 106418, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36870577

ABSTRACT

INTRODUCTION: In the randomized double-blind placebo-controlled CounterCOVID study, oral imatinib treatment conferred a positive clinical outcome and a signal for reduced mortality in COVID-19 patients. High concentrations of alpha-1 acid glycoprotein (AAG) were observed in these patients and were associated with increased total imatinib concentrations. AIMS: This post-hoc study aimed to compare the difference in exposure following oral imatinib administration in COVID-19 patients to cancer patients and assess assocations between pharmacokinetic (PK) parameters and pharmacodynamic (PD) outcomes of imatinib in COVID-19 patients. We hypothesize that a relatively higher drug exposure of imatinib in severe COVID-19 patients leads to improved pharmacodynamic outcome parameters. METHODS: 648 total concentration plasma samples obtained from 168 COVID-19 patients were compared to 475 samples of 105 cancer patients, using an AAG-binding model. Total trough concentration at steady state (Cttrough) and total average area under the concentration-time curve (AUCtave) were associated with ratio between partial oxygen pressure and fraction of inspired oxygen (P/F), WHO ordinal scale (WHO-score) and liberation of oxygen supplementation (O2lib). Linear regression, linear mixed effects models and time-to-event analysis were adjusted for possible confounders. RESULTS: AUCtave and Cttrough were respectively 2.21-fold (95%CI 2.07-2.37) and 1.53-fold (95%CI 1.44-1.63) lower for cancer compared to COVID-19 patients. Cttrough, not AUCtave, associated significantly with P/F (ß=-19,64; p-value=0.014) and O2lib (HR 0.78; p-value= 0.032), after adjusting for sex, age, neutrophil-lymphocyte ratio, dexamethasone concomitant treatment, AAG and baseline P/F-and WHO-score. Cttrough, but not AUCtave associated significantly with WHO-score. These results suggest an inverse relationship between PK-parameters, Cttrough and AUCtave, and PD outcomes. CONCLUSION: COVID-19 patients exhibit higher total imatinib exposure compared to cancer patients, attributed to differences in plasma protein concentrations. Higher imatinib exposure in COVID-19 patients did not associate with improved clinical outcomes. Cttrough and AUCtave inversely associated with some PD-outcomes, which may be biased by disease course, variability in metabolic rate and protein binding. Therefore, additional PKPD analyses into unbound imatinib and its main metabolite may better explain exposure-response.


Subject(s)
COVID-19 , Neoplasms , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Drug Repositioning , Neoplasms/drug therapy
2.
Cancers (Basel) ; 15(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900352

ABSTRACT

Glioblastoma multiforme is the most common primary central nervous system tumor, with an incidence of 3 [...].

3.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 640-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35213797

ABSTRACT

The use of systems-based pharmacological modeling approaches to characterize mode-of-action and concentration-effect relationships for drugs on specific hemodynamic variables has been demonstrated. Here, we (i) expand a previously developed hemodynamic system model through integration of cardiac output (CO) with contractility (CTR) using pressure-volume loop theory, and (ii) evaluate the contribution of CO data for identification of system-specific parameters, using atenolol as proof-of-concept drug. Previously collected experimental data was used to develop the systems model, and included measurements for heart rate (HR), CO, mean arterial pressure (MAP), and CTR after administration of atenolol (0.3-30 mg/kg) from three in vivo telemetry studies in conscious Beagle dogs. The developed cardiovascular (CVS)-contractility systems model adequately described the effect of atenolol on HR, CO, dP/dtmax, and MAP dynamics and allowed identification of both system- and drug-specific parameters with good precision. Model parameters were structurally identifiable, and the true mode of action can be identified properly. Omission of CO data did not lead to a significant change in parameter estimates compared to a model that included CO data. The newly developed CVS-contractility systems model characterizes short-term drug effects on CTR, CO, and other hemodynamic variables in an integrated and quantitative manner. When the baseline value of total peripheral resistance is predefined, CO data was not required to identify drug- and system-specific parameters. Confirmation of the consistency of system-specific parameters via inclusion of data for additional drugs and species is warranted. Ultimately, the developed model has the potential to be of relevance to support translational CVS safety studies.


Subject(s)
Cardiovascular System , Myocardial Contraction , Animals , Atenolol/pharmacology , Dogs , Heart Rate , Hemodynamics/physiology , Humans , Myocardial Contraction/physiology
4.
Bioorg Med Chem ; 13(21): 5921-6, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16154748

ABSTRACT

A novel series of cationic surfactants was prepared based on Mannich base (produced from the condensation of piperidine and/or morpholine as secondary amine and paraformaldehyde in the presence of 8-hydroxyquinoline). The chemical structures of the synthesized cationic surfactants were confirmed using elemental analyses, FTIR spectroscopy and 1H NMR. Surface activities of the prepared surfactants were measured including: surface tension (gamma), critical micelle concentration (CMC), effectiveness (pi(CMC)), efficiency (Pc20), maximum surface excess (Gamma(max)), minimum surface area (A(min)), interfacial tension (gamma(IT)), emulsification power and foaming power at 25 degrees C. The structural influences on their surface activities and adsorption free energy were discussed. The synthesized cationic surfactants were evaluated for their biocidal activity towards Gram +ve bacteria (Staph. Cocu., Bacillus), Gram -ve bacteria (Salmonella, E. coli), fungi (A. terrus., A. flav.) and yeast (Candida) at 1.0, 2.5 and 5.0mg/mL, respectively. The target compounds showed good inhibition towards Gram +ve bacteria, Gram -ve bacteria and yeast. Meanwhile, excellent fungicidal results were obtained against the various types of fungi under investigation.


Subject(s)
Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Adsorption , Amines/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Cations/chemistry , Emulsions/chemistry , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...