Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 56(19): 13761-13773, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36129683

ABSTRACT

Domestic wells serve as the primary drinking-water source for rural residents in the northern Appalachian Basin (NAB), despite a limited understanding of contaminant distributions in groundwater sources. We employ a newly collected dataset of 216 water samples from domestic wells in Ohio and West Virginia and an integrated contaminant-source attribution method to describe water quality in the western NAB and characterize key agents influencing contaminant distributions. Our results reveal arsenic and nitrate concentrations above federal maximum contaminant levels (MCLs) in 6.8 and 1.3% of samples and manganese concentrations above health advisory in 7.3% of samples. Recently recharged groundwaters beneath upland regions appear vulnerable to surface-related impacts, including nitrate pollution from agricultural activities and salinization from road salting and domestic sewage sources. Valley regions serve as terminal discharge points for long-residence-time groundwaters, where mixing with basin brines is possible. Arsenic impairments occurred in alkaline groundwaters with major-ion compositions altered by ion exchange and in low-oxygen metal-rich groundwaters. Mixing with as much as 4-10% of mine discharge-like waters was observed near coal mining operations. Our study provides new insights into key agents of groundwater impairment in an understudied region of the NAB and presents an integrated approach for contaminant-source attribution applicable to other regions of intensive resource extraction.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Environmental Monitoring , Manganese , Nitrates , Organic Chemicals , Oxygen , Sewage , Water Pollutants, Chemical/analysis
2.
Proc Natl Acad Sci U S A ; 115(27): 6970-6975, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29915033

ABSTRACT

Concern persists over the potential for unconventional oil and gas development to contaminate groundwater with methane and other chemicals. These concerns motivated our 2-year prospective study of groundwater quality within the Marcellus Shale. We installed eight multilevel monitoring wells within bedrock aquifers of a 25-km2 area targeted for shale gas development (SGD). Twenty-four isolated intervals within these wells were sampled monthly over 2 years and groundwater pressures were recorded before, during, and after seven shale gas wells were drilled, hydraulically fractured, and placed into production. Perturbations in groundwater pressures were detected at hilltop monitoring wells during drilling of nearby gas wells and during a gas well casing breach. In both instances, pressure changes were ephemeral (<24 hours) and no lasting impact on groundwater quality was observed. Overall, methane concentrations ([CH4]) ranged from detection limit to 70 mg/L, increased with aquifer depth, and, at several sites, exhibited considerable temporal variability. Methane concentrations in valley monitoring wells located above gas well laterals increased in conjunction with SGD, but CH4 isotopic composition and hydrocarbon composition (CH4/C2H6) are inconsistent with Marcellus origins for this gas. Further, salinity increased concurrently with [CH4], which rules out contamination by gas phase migration of fugitive methane from structurally compromised gas wells. Collectively, our observations suggest that SGD was an unlikely source of methane in our valley wells, and that naturally occurring methane in valley settings, where regional flow systems interact with local flow systems, is more variable in concentration and composition both temporally and spatially than previously understood.

3.
Ground Water ; 39(5): 768-77, 2001.
Article in English | MEDLINE | ID: mdl-11554256

ABSTRACT

Data from a large-scale canal-drawdown test were used to estimate the specific yield (sy) of the Biscayne Aquifer, an unconfined limestone aquifer in southeast Florida. The drawdown test involved dropping the water level in a canal by about 30 cm and monitoring the response of hydraulic head in the surrounding aquifer. Specific yield was determined by analyzing data from the unsteady portion of the drawdown test using an analytical stream-aquifer interaction model (Zlotnik and Huang 1999). Specific yield values computed from drawdown at individual piezometers ranged from 0.050 to 0.57, most likely indicating heterogeneity of specific yield within the aquifer (small-scale variation in hydraulic conductivity may also have contributed to the differences in sy among piezometers). A value of 0.15 (our best estimate) was computed based on all drawdown data from all piezometers. We incorporated our best estimate of specific yield into a large-scale two-dimensional numerical MODFLOW-based ground water flow model and made predictions of head during a 183-day period at four wells located 337 to 2546 m from the canal. We found good agreement between observed and predicted heads, indicating our estimate of specific yield is representative of the large portion of the Biscayne Aquifer studied here. This work represents a practical and novel approach to the determination of a key hydrogeological parameter (the storage parameter needed for simulation and calculation of transient unconfined ground water flow), at a large spatial scale (a common scale for water resource modeling), for a highly transmissive limestone aquifer (in which execution of a traditional pump test would be impractical and would likely yield ambiguous results). Accurate estimates of specific yield and other hydrogeological parameters are critical for management of water supply, Everglades environmental restoration, flood control, and other issues related to the ground water hydrology of the Biscayne Aquifer.


Subject(s)
Models, Theoretical , Water Movements , Water Supply , Calcium Carbonate , Forecasting , Pressure , Soil
4.
J Contam Hydrol ; 49(3-4): 311-34, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11411402

ABSTRACT

We examine how the processes of advection, dispersion, oxidation-reduction, and adsorption combine to affect the transport of chromium through columns packed with pyrolusite (beta-MnO2)-coated sand. We find that beta-MnO2 effectively oxidizes Cr(III) to Cr(VI) and that the extent of oxidation is sensitive to changes in pH, pore water velocity, and influent concentrations of Cr(III). Cr(III) oxidation rates, although initially high, decline well before the supply of beta-MnO2 is depleted, suggesting that a reaction product inhibits the conversion of Cr(III) to Cr(VI). Rate-limited reactions govern the weak adsorption of each chromium species, with Cr(III) adsorption varying directly with pH and Cr(VI) adsorption varying inversely with pH. The breakthrough data on chromium transport can be matched closely by calculations of a simple model that accounts for (1) advective-dispersive transport of Cr(III), Cr(VI), and dissolved oxygen, (2) first-order kinetics adsorption of the reduced and oxidized chromium species, and (3) nonlinear rate-limited oxidation of Cr(III) to Cr(VI). Our work supplements the limited database on the transport of redox-sensitive metals in porous media and provides a means for quantifying the coupled processes that contribute to this transport.


Subject(s)
Chromium Compounds/chemistry , Manganese Compounds/chemistry , Models, Chemical , Oxides/chemistry , Water Pollutants, Chemical , Adsorption , Chromium Compounds/analysis , Manganese Compounds/analysis , Oxidation-Reduction , Oxides/analysis , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL