Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338826

ABSTRACT

This study delves into the thermodynamics of liquid-phase adsorption on hypercrosslinked polystyrene networks (HPSNs), widely recognized for their distinct structure and properties. Despite the considerable progress in HPSN synthesis and characterization, gaps persist regarding the chromatographic retention mechanism, thermodynamics of adsorption, and their impact on the adsorption selectivity, especially in the case of networks with ultra-high crosslinking densities (up to 500%). Utilizing high-performance liquid chromatography (HPLC), we have explored, for the first time, the thermodynamic intricacies of liquid-phase adsorption onto HPSNs crosslinked in the entire range of the crosslinking degree from 100 to 500%. Our findings reveal the dependences of thermodynamic characteristics and selectivity of adsorption on the crosslinking degree, textural features, and liquid-phase composition in the region of extremely low adsorbent surface coverages (Henry's range). We have detected that, in the case of HPSNs, the dependence of the thermodynamic characteristics of adsorption on the liquid-phase composition is different than for classical HPLC stationary phases. Moreover, we scrutinize the impact of the molecular structure of the studied aromatic compounds on the thermodynamic characteristics and selectivity of the liquid-phase adsorption on HPSNs. Investigating liquid-phase adsorption selectivity, we demonstrate the pivotal role of π-π interactions in separating aromatic compounds on HPSNs. Eventually, we unveil that the thermodynamic characteristics of adsorption peculiarly depend on the crosslinking degree due to the profound impact of the crosslinking on the electronic density in benzene rings in HPSNs, whereas the separation throughput peaks for the polymer with a 500% crosslinking degree, attributed to its exceptionally rigid network structure, moderate swelling and micropore volume, and minimum specific surface area.


Subject(s)
Polystyrenes , Adsorption , Polystyrenes/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Thermodynamics
2.
Polymers (Basel) ; 14(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35406247

ABSTRACT

Composite materials have been used based on coordination polymers or microporous metal-organic frameworks (MOFs) combined with mesoporous matrices for adsorption-related techniques, which enable outflanking some adverse phenomena manifested during pristine components operation and enhance the performance and selectivity of the resulting materials. In this work, for the first time, the novel HKUST-1@BPS composites synthesized by the microwave-assisted (MW) technique starting from microporous HKUST-1 (Cu3(btc)2) MOF and biporous silica matrix (BPS) with bimodal mesopore size distribution were comparatively studied as materials for liquid-phase adsorption techniques utilizing the high-performance liquid chromatography (HPLC) method and benzene as a model adsorbate. It was established that the studied HKUST-1@BPS composites can function as stationary phases for HPLC, unlike the pristine HKUST-1 and bare BPS materials, due to the synergetic effect of both components based on the preliminary enhanced adsorbate mass transfer throughout the silica mesopores and, subsequently, its penetrating into HKUST-1 micropores. The suggested mechanism involves the initial deactivation of open metal Cu2+ sites in the HKUST-1 framework structure by isopropanol molecules upon adding this polar component into the mobile phase in the region of the isopropanol concentration of 0.0 to 0.2 vol.%. Thereafter, at the medium range of varying the isopropanol concentration in the eluent of 0.2 to 0.3 vol.%, there is an expansion of the previously inaccessible adsorption centers in the HKUST-1@BPS composites. Subsequently, while further increasing the isopropanol volume fraction in the eluent in the region of 0.3 to 5.0 vol.%, the observed behavior of the studied chromatographic systems is similar to the quasi-normal-phase HPLC pattern. According to the obtained thermodynamic data, benzene adsorption into HKUST-1 micropores from solutions with a vol.% of isopropanol in the range of 0.4 to 5.0 follows the unique entropy-driven mechanism previously described for the MIL-53(Al) framework. It was found that HKUST-1 loading in the composites and their preparation conditions have pronounced effects on their physicochemical properties and adsorption performance, including the adsorption mechanism.

3.
Molecules ; 25(11)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517274

ABSTRACT

To date, metal-organic frameworks (MOFs) have been recognized as promising solid phases in high-performance liquid chromatography (HPLC). This research aimed to elucidate the role of the physico-chemical characteristics of the microporous HKUST-1 metal-organic framework in its operation as a selective adsorbent in HPLC. For this, the HKUST-1 samples were prepared by microwave-assisted synthesis and a solvothermal procedure. According to the chromatographic examinations, the HKUST-1 material synthesized in the microwave fields shows an efficient performance in the selective adsorption of aromatic compounds with different functionalities. This study revealed a significant impact of the preparation procedure on the mechanism of the liquid-phase adsorption on the HKUST adsorbents under conditions of the HPLC. An effect of the elution solvent with the different coordination ability to the Cu2+ sites in the HKUST-1 structure on the adsorption selectivity was observed.


Subject(s)
Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Metal-Organic Frameworks/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...