Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579685

ABSTRACT

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , YAP-Signaling Proteins , Animals , Humans , Mice , Cell Proliferation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/agonists , YAP-Signaling Proteins/drug effects , YAP-Signaling Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
2.
Liver Int ; 43(9): 1984-1994, 2023 09.
Article in English | MEDLINE | ID: mdl-37443448

ABSTRACT

BACKGROUND AND AIMS: A reduction in hepatic venous pressure gradient (HVPG) is the most accurate marker for assessing the severity of portal hypertension and the effectiveness of intervention treatments. This study aimed to evaluate the prognostic potential of blood-based proteomic biomarkers in predicting HVPG response amongst cirrhotic patients with portal hypertension due to Hepatitis C virus (HCV) and had achieved sustained virologic response (SVR). METHODS: The study comprised 59 patients from two cohorts. Patients underwent paired HVPG (pretreatment and after SVR), liver stiffness (LSM), and enhanced liver fibrosis scores (ELF) measurements, as well as proteomics-based profiling on serum samples using SomaScan® at baseline (BL) and after SVR (EOS). Machine learning with feature selection (Caret, Random Forest and RPART) methods were performed to determine the proteins capable of classifying HVPG responders. Model performance was evaluated using AUROC (pROC R package). RESULTS: Patients were stratified by a change in HVPG (EOS vs. BL) into responders (greater than 20% decline in HVPG from BL, or <10 mmHg at EOS with >10 mmHg at BL) and non-responders. LSM and ELF decreased markedly after SVR but did not correlate with HVPG response. SomaScan (SomaLogic, Inc., Boulder, CO) analysis revealed a substantial shift in the peripheral proteome composition, reflected by 82 significantly differentially abundant proteins. Twelve proteins accurately distinguished responders from non-responders, with an AUROC of .86, sensitivity of 83%, specificity of 83%, accuracy of 83%, PPV of 83%, and NPV of 83%. CONCLUSIONS: A combined non-invasive soluble protein signature was identified, capable of accurately predicting HVPG response in HCV liver cirrhosis patients after achieving SVR.


Subject(s)
Hepatitis C , Hypertension, Portal , Humans , Sustained Virologic Response , Proteomics , Liver Cirrhosis , Hypertension, Portal/drug therapy , Hypertension, Portal/etiology , Hepacivirus , Portal Pressure , Venous Pressure
3.
Cell Stem Cell ; 28(10): 1822-1837.e10, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34129813

ABSTRACT

AXIN2 and LGR5 mark intestinal stem cells (ISCs) that require WNT/ß-Catenin signaling for constant homeostatic proliferation. In contrast, AXIN2/LGR5+ pericentral hepatocytes show low proliferation rates despite a WNT/ß-Catenin activity gradient required for metabolic liver zonation. The mechanisms restricting proliferation in AXIN2+ hepatocytes and metabolic gene expression in AXIN2+ ISCs remained elusive. We now show that restricted chromatin accessibility in ISCs prevents the expression of ß-Catenin-regulated metabolic enzymes, whereas fine-tuning of WNT/ß-Catenin activity by ZNRF3 and RNF43 restricts proliferation in chromatin-permissive AXIN2+ hepatocytes, while preserving metabolic function. ZNRF3 deletion promotes hepatocyte proliferation, which in turn becomes limited by RNF43 upregulation. Concomitant deletion of RNF43 in ZNRF3 mutant mice results in metabolic reprogramming of periportal hepatocytes and induces clonal expansion in a subset of hepatocytes, ultimately promoting liver tumors. Together, ZNRF3 and RNF43 cooperate to safeguard liver homeostasis by spatially and temporally restricting WNT/ß-Catenin activity, balancing metabolic function and hepatocyte proliferation.


Subject(s)
Liver , Ubiquitin-Protein Ligases/genetics , Animals , Cell Proliferation , Hepatocytes/metabolism , Liver/growth & development , Liver/metabolism , Mice , Stem Cells/metabolism , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
5.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919387

ABSTRACT

The EBI2 receptor regulates the immune system and is expressed in various immune cells including B and T lymphocytes. It is also expressed in astrocytes in the central nervous system (CNS) where it regulates pro-inflammatory cytokine release, cell migration and protects from chemically induced demyelination. Its signaling and expression are implicated in various diseases including multiple sclerosis, where its expression is increased in infiltrating immune cells in the white matter lesions. Here, for the first time, the EBI2 protein in the CNS cells in the human brain was examined. The function of the receptor in MO3.13 oligodendrocytes, as well as its role in remyelination in organotypic cerebellar slices, were investigated. Human brain sections were co-stained for EBI2 receptor and various markers of CNS-specific cells and the human oligodendrocyte cell line MO3.13 was used to investigate changes in EBI2 expression and cellular migration. Organotypic cerebellar slices prepared from wild-type and cholesterol 25-hydroxylase knock-out mice were used to study remyelination following lysophosphatidylcholine (LPC)-induced demyelination. The data showed that EBI2 receptor is present in OPCs but not in myelinating oligodendrocytes in the human brain and that EBI2 expression is temporarily upregulated in maturing MO3.13 oligodendrocytes. Moreover, we show that migration of MO3.13 cells is directly regulated by EBI2 and that its signaling is necessary for remyelination in cerebellar slices post-LPC-induced demyelination. The work reported here provides new information on the expression and role of EBI2 in oligodendrocytes and myelination and provides new tools for modulation of oligodendrocyte biology and therapeutic approaches for demyelinating diseases.


Subject(s)
Brain/cytology , Cerebellum/cytology , Oligodendroglia/cytology , Receptors, G-Protein-Coupled/metabolism , Stem Cells/cytology , Animals , Brain/metabolism , Cerebellum/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligodendroglia/metabolism , Receptors, G-Protein-Coupled/genetics , Remyelination , Stem Cells/metabolism
6.
Nat Microbiol ; 6(6): 792-805, 2021 06.
Article in English | MEDLINE | ID: mdl-33846627

ABSTRACT

Human physiology is regulated by endogenous signalling compounds, including fatty acid amides (FAAs), chemical mimics of which are made by bacteria. The molecules produced by human-associated microbes are difficult to identify because they may only be made in a local niche or they require a substrate sourced from the host, diet or other microbes. We identified a set of uncharacterized gene clusters in metagenomics data from the human gut microbiome. These clusters were discovered to make FAAs by fusing exogenous fatty acids with amines. Using an in vitro assay, we tested their ability to incorporate 25 fatty acids and 53 amines known to be present in the human gut, from which the production of six FAAs was deduced (oleoyl dopamine, oleoyl tyramine, lauroyl tryptamine, oleoyl aminovaleric acid, α-linolenoyl phenylethylamine and caproyl tryptamine). These molecules were screened against panels of human G-protein-coupled receptors to deduce their putative human targets. Lauroyl tryptamine is found to be an antagonist to the immunomodulatory receptor EBI2 against its native oxysterol ligand (0.98 µM half-maximal inhibitory concentration), is produced in culture by Eubacterium rectale and is present in human faecal samples. FAAs produced by Clostridia may serve as a mechanism to modulate their host by mimicking human signalling molecules.


Subject(s)
Amines/metabolism , Fatty Acids/metabolism , Firmicutes/metabolism , Gastrointestinal Microbiome , Neurotransmitter Agents/metabolism , Amines/chemistry , Diet , Fatty Acids/chemistry , Firmicutes/classification , Firmicutes/genetics , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Neurotransmitter Agents/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
7.
Br J Pharmacol ; 178(16): 3140-3156, 2021 08.
Article in English | MEDLINE | ID: mdl-33145756

ABSTRACT

Immune cell trafficking is an important mechanism for the pathogenesis of inflammatory bowel disease (IBD). The oxysterol receptor GPR183 and its ligands, dihydroxylated oxysterols, can mediate positioning of immune cells including innate lymphoid cells. GPR183 has been mapped to an IBD risk locus, however another gene, Ubac2 is encoded on the reverse strand and associated with Behçet's disease, therefore the role of GPR183 as a genetic risk factor requires validation. GPR183 and production of its oxysterol ligands are up-regulated in human IBD and murine colitis. Gpr183 inactivation reduced severity of colitis in group 3 innate lymphoid cells-dependent colitis and in IL-10 colitis but not in dextran sodium sulphate colitis. Irrespectively, Gpr183 knockout strongly reduced accumulation of intestinal lymphoid tissue in health and all colitis models. In conclusion, genetic, translational and experimental studies implicate GPR183 in IBD pathogenesis and GPR183-dependent cell migration might be a therapeutic drug target for IBD. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Humans , Immunity, Innate , Inflammatory Bowel Diseases/drug therapy , Lymphocytes , Mice , Receptors, G-Protein-Coupled , Receptors, Steroid
8.
J Lipid Res ; 60(7): 1270-1283, 2019 07.
Article in English | MEDLINE | ID: mdl-31113816

ABSTRACT

Nonalcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in the livers of NASH patients by LC-MS and tested the role of the EBI2-7α,25-diHC system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared with controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype-related differences were observed in Ebi2-/- mice and mice with defects in the 7α,25-diHC synthesizing enzymes CH25H and CYP7B1 compared with wild-type littermate controls, arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by the enhanced level of 7α-hydroxycholest-4-en-3-one and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH.


Subject(s)
Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxysterols/metabolism , Adult , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cholesterol/blood , Chromatography, Liquid , Flow Cytometry , Humans , Hydroxycholesterols/blood , Hydroxycholesterols/metabolism , Male , Mass Spectrometry , Mice , Mice, Knockout , Middle Aged , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Non-alcoholic Fatty Liver Disease/blood , Oxysterols/blood , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism
9.
Cell Stem Cell ; 25(1): 39-53.e10, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31080135

ABSTRACT

Biliary epithelial cells (BECs) form bile ducts in the liver and are facultative liver stem cells that establish a ductular reaction (DR) to support liver regeneration following injury. Liver damage induces periportal LGR5+ putative liver stem cells that can form BEC-like organoids, suggesting that RSPO-LGR4/5-mediated WNT/ß-catenin activity is important for a DR. We addressed the roles of this and other signaling pathways in a DR by performing a focused CRISPR-based loss-of-function screen in BEC-like organoids, followed by in vivo validation and single-cell RNA sequencing. We found that BECs lack and do not require LGR4/5-mediated WNT/ß-catenin signaling during a DR, whereas YAP and mTORC1 signaling are required for this process. Upregulation of AXIN2 and LGR5 is required in hepatocytes to enable their regenerative capacity in response to injury. Together, these data highlight heterogeneity within the BEC pool, delineate signaling pathways involved in a DR, and clarify the identity and roles of injury-induced periportal LGR5+ cells.


Subject(s)
Acute Lung Injury/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Bile Ducts/pathology , Cell Cycle Proteins/metabolism , Epithelial Cells/physiology , Induced Pluripotent Stem Cells/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Axin Protein/genetics , Axin Protein/metabolism , Cell Cycle Proteins/genetics , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Models, Animal , Humans , Liver Regeneration , Male , Mice , Mice, Inbred C57BL , Pyridines/toxicity , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Thrombospondins/genetics , Thrombospondins/metabolism , Wnt Signaling Pathway , YAP-Signaling Proteins
10.
J Steroid Biochem Mol Biol ; 190: 19-28, 2019 06.
Article in English | MEDLINE | ID: mdl-30902677

ABSTRACT

Oxysterols are cholesterol metabolites derived through either autoxidation or enzymatic processes. They consist of a large family of bioactive lipids that have been associated with the progression of multiple pathologies. In order to unravel (patho-)physiological mechanisms involving oxysterols, it is crucial to elucidate the underlying formation and degradation of oxysterols. A role of 11ß-hydroxysteroid dehydrogenases (11ß-HSDs) in oxysterol metabolism by catalyzing the interconversion of 7-ketocholesterol (7kC) and 7ß-hydroxycholesterol (7ßOHC) has already been reported. The present study addresses a function of 11ß-HSD1 in the enzymatic generation of 7ß,25-dihydroxycholesterol (7ß25OHC) from 7-keto,25-hydroxycholesterol (7k25OHC) and tested whether 11ß-HSD2 is able to catalyze the reverse reaction. For the first time, using recombinant enzymes, the formation of 7k25OHC from 7kC by cholesterol 25-hydroxylase (CH25H) and further stereospecific oxoreduction to 7ß25OHC by human and mouse 11ß-HSD1 could be demonstrated. Additionally, experiments using human 11ß-HSD2 showed the oxidation of 7ß25OHC to 7k25OHC. Molecular modeling provided an explanation for the stereospecific interconversion of 7ß25OHC and 7k25OHC. Production of the Epstein-Barr virus-induced gene 2 (EBI2) ligand 7ß25OHC from 7k25OHC in challenged tissue by 11ß-HSD1 may be important in inflammation. In conclusion, these results demonstrate a novel glucocorticoid-independent pre-receptor regulation mediated by 11ß-HSDs.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Hydroxycholesterols/metabolism , Ketocholesterols/metabolism , Animals , HEK293 Cells , Humans , Hydroxylation , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Oxidation-Reduction , RAW 264.7 Cells
11.
Mucosal Immunol ; 12(3): 733-745, 2019 05.
Article in English | MEDLINE | ID: mdl-30742043

ABSTRACT

The gene encoding for Epstein-Barr virus-induced G-protein-coupled receptor 2 (EBI2) is a risk gene for inflammatory bowel disease (IBD). Together with its oxysterol ligand 7α,25-dihydroxycholesterol, EBI2 mediates migration and differentiation of immune cells. However, the role of EBI2 in the colonic immune system remains insufficiently studied. We found increased mRNA expression of EBI2 and oxysterol-synthesizing enzymes (CH25H, CYP7B1) in the inflamed colon of patients with ulcerative colitis and mice with acute or chronic dextran sulfate sodium (DSS) colitis. Accordingly, we detected elevated levels of 25-hydroxylated oxysterols, including 7α,25-dihydroxycholesterol in mice with acute colonic inflammation. Knockout of EBI2 or CH25H did not affect severity of DSS colitis; however, inflammation was decreased in male EBI2-/- mice in the IL-10 colitis model. The colonic immune system comprises mucosal lymphoid structures, which accumulate upon chronic inflammation in IL-10-deficient mice and in chronic DSS colitis. However, EBI2-/- mice formed significantly less colonic lymphoid structures at baseline and showed defects in inflammation-induced accumulation of lymphoid structures. In summary, we report induction of the EBI2-7α,25-dihydroxycholesterol axis in colitis and a role of EBI2 for the accumulation of lymphoid tissue during homeostasis and inflammation. These data implicate the EBI2-7α,25-dihydroxycholesterol axis in IBD pathogenesis.


Subject(s)
Colitis/metabolism , Colon/pathology , Receptors, G-Protein-Coupled/metabolism , Tertiary Lymphoid Structures/pathology , Animals , Cell Movement , Cells, Cultured , Colitis/chemically induced , Colitis/immunology , Dextran Sulfate , Disease Models, Animal , Female , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxysterols/metabolism , Receptors, G-Protein-Coupled/genetics , Sex Factors , Signal Transduction
12.
Neurosci Lett ; 673: 12-18, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29496607

ABSTRACT

Parkin associated endothelin like receptor (PAELR) is G-protein coupled and ubiquitinated by parkin, promoting its degradation. In autosomal recessive Parkinson's disease, mutations in parkin lead to PAELR aggregation in the endoplasmic reticulum (ER), ER stress, neurotoxicity and cell death. We have identified previously that the protein kinase C interacting protein (PICK1) interacts with and regulates the expression and cell toxicity of PAELR. Here, we experimentally identify and provide in-silico modelling of a novel interaction between PAELR and GABARAPL2 (γ-aminobutyrate type A receptor associated protein like 2), which is an autophagosome-specific Ub-like protein implicated in vesicle trafficking and autophagy. We show that the family of GABARAPs interact with the carboxy terminal (ct) of PAELR and find the cysteine rich region (-CCCCCC-EEC) of ct-PAELR interacts with the GABAA binding site of GABARAPL2. This interaction is modelled by in-slico analysis and confirmed using affinity chromatography, showing Myc-tagged GABARAPL2 is retained by a GST fusion of the ct-PAELR. We also demonstrate that transient transfection of GABARAPL2 in HEK293 cells reduces PAELR expression. This study supports the idea that protein levels of PAELR are likely regulated by a multitude of proteins including parkin, PICK1 and GABARAPL2 via mechanisms that include ubiquitination, proteasomal degradagtion and autophagy.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Parkinson Disease/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Autophagy , Carrier Proteins , Computer Simulation , HEK293 Cells , Humans , Models, Molecular , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Ubiquitination
13.
Neuropharmacology ; 133: 121-128, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29374507

ABSTRACT

The endogenous oxysterol 7α, 25-dihydroxycholesterol (7α25HC) ligand activates the G protein-coupled receptor EBI2 to regulate T cell-dependant antibody response and B cell migration. We have demonstrated that EBI2 is expressed in human and mouse astrocytes, that 7α25HC induces intracellular signalling and astrocyte migration, and that EBI2 plays a role in the crosstalk between astrocytes and macrophages. Recently, we demonstrate that EBI2 regulates myelin development and inhibits LPC-induced demyelination. Here, we show that 7α25HC inhibits LPS- and IL17/TNF-induced pro-inflammatory cytokine release in astrocytes. We observe the following: 1. Human astrocytes treated with IL17/TNF increases the nuclear translocation of NFκB, which is attenuated by pre-treatment with 7α25HC; 2. IL17/TNF increases cell impedance in human astrocytes, which is also attenuated by pre-treatment with 7α25HC; 3. The EBI2 antagonist NIBR189 inhibits these effects of 7α25HC, supporting the role of EBI2; 4. in vivo data corroborate these in vitro findings, showing that EBI2 knock-out (KO) animals display enhanced pro-inflammatory cytokine in response to LPS challenge, in the brain. These results demonstrate a role for oxysterol/EBI2 signalling in attenuating the response of astrocytes to pro-inflammatory signals as well as limiting the levels of pro-inflammatory cytokines in the brain.


Subject(s)
Astrocytes/metabolism , Cytokines/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Animals , Astrocytes/drug effects , Cells, Cultured , Cholesterol/analogs & derivatives , Cholesterol/pharmacology , Cytokines/pharmacology , Dose-Response Relationship, Drug , Humans , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Protein Transport/drug effects , Protein Transport/genetics , Rats , Receptors, G-Protein-Coupled/genetics , Signal Transduction/drug effects
14.
Sci Rep ; 8(1): 1799, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29379065

ABSTRACT

We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.


Subject(s)
DNA, Mitochondrial/genetics , Sequence Deletion/genetics , Cell Differentiation/genetics , Cell Line , Clone Cells/metabolism , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mitochondria/genetics , Point Mutation/genetics
15.
Proc Natl Acad Sci U S A ; 115(2): E180-E189, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29269392

ABSTRACT

PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type.


Subject(s)
CRISPR-Cas Systems , Gene Expression Regulation , Genome, Human/genetics , Mitophagy/genetics , Repressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Cell Line, Tumor , Cells, Cultured , HCT116 Cells , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Infant, Newborn , Neurons/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Repressor Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
16.
J Neuroinflammation ; 14(1): 250, 2017 Dec 16.
Article in English | MEDLINE | ID: mdl-29246262

ABSTRACT

BACKGROUND: The G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2) is activated by 7α, 25-dihydroxycholesterol (7α25HC) and plays a role in T cell-dependant antibody response and B cell migration. Abnormal EBI2 signaling is implicated in a range of autoimmune disorders; however, its role in the CNS remains poorly understood. METHODS: Here we characterize the role of EBI2 in myelination under normal and pathophysiological conditions using organotypic cerebellar slice cultures and EBI2 knock-out (KO) animals. RESULTS: We find that MBP expression in brains taken from EBI2 KO mice is delayed compared to those taken from wild type (WT) mice. In agreement with these in vivo findings, we show that antagonism of EBI2 reduces MBP expression in vitro. Importantly, we demonstrate that EBI2 activation attenuates lysolecithin (LPC)-induced demyelination in mouse organotypic slice cultures. Moreover, EBI2 activation also inhibits LPC-mediated release of pro-inflammatory cytokines such as IL6 and IL1ß in cerebellar slices. CONCLUSIONS: These results, for the first time, display a role for EBI2 in myelin development and protection from demyelination under pathophysiological conditions and suggest that modulation of this receptor may be beneficial in neuroinflammatory and demyelinating disorders such as multiple sclerosis.


Subject(s)
Cerebellum/metabolism , Demyelinating Diseases/metabolism , Myelin Sheath/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Demyelinating Diseases/chemically induced , Lysophosphatidylcholines/toxicity , Mice , Mice, Knockout , Myelin Basic Protein/biosynthesis , Organ Culture Techniques
18.
Cell Rep ; 18(5): 1270-1284, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28147280

ABSTRACT

Arrival of encephalitogenic T cells at inflammatory foci represents a critical step in development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. EBI2 and its ligand, 7α,25-OHC, direct immune cell localization in secondary lymphoid organs. CH25H and CYP7B1 hydroxylate cholesterol to 7α,25-OHC. During EAE, we found increased expression of CH25H by microglia and CYP7B1 by CNS-infiltrating immune cells elevating the ligand concentration in the CNS. Two critical pro-inflammatory cytokines, interleukin-23 (IL-23) and interleukin-1 beta (IL-1ß), maintained expression of EBI2 in differentiating Th17 cells. In line with this, EBI2 enhanced early migration of encephalitogenic T cells into the CNS in a transfer EAE model. Nonetheless, EBI2 was dispensable in active EAE. Human Th17 cells do also express EBI2, and EBI2 expressing cells are abundant within multiple sclerosis (MS) white matter lesions. These findings implicate EBI2 as a mediator of CNS autoimmunity and describe mechanistically its contribution to the migration of autoreactive T cells into inflamed organs.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/physiology , Cell Movement/physiology , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Autoimmunity/physiology , Central Nervous System/physiology , Cytochrome P450 Family 7/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Interleukin-1beta/metabolism , Interleukin-23/metabolism , Male , Mice , Mice, Inbred C57BL , Steroid Hydroxylases/metabolism , Th17 Cells/metabolism , Th17 Cells/physiology
19.
Cell Rep ; 18(1): 213-224, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28052250

ABSTRACT

The interaction between oxysterols and the G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2) fine-tunes immune cell migration, a mechanism efficiently targeted by several disease-modifying treatments developed to treat multiple sclerosis (MS), such as natalizumab. We previously showed that memory CD4+ T lymphocytes migrate specifically in response to 7α,25-dihydroxycholesterol (7α,25-OHC) via EBI2 in the MS murine model experimental autoimmune encephalomyelitis. However, the EBI2 expression profile in human lymphocytes in both healthy and MS donors is unknown. Here, we characterize EBI2 biology in human lymphocytes. We observed that EBI2 is functionally expressed on memory CD4+ T cells and is enhanced under natalizumab treatment. These data suggest a significant role for EBI2 in human CD4+ T cell migration, notably in patients with MS. Better knowledge of EBI2 involvement in autoimmunity may therefore lead to an improved understanding of the physiopathology of MS.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Immunologic Memory , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Natalizumab/therapeutic use , Receptors, G-Protein-Coupled/metabolism , Adult , CD11 Antigens/metabolism , CD4-Positive T-Lymphocytes/drug effects , Cell Movement/drug effects , Humans , Hydroxycholesterols/pharmacology , Immunologic Memory/drug effects , Multiple Sclerosis/pathology , Natalizumab/pharmacology
20.
Am J Hum Genet ; 100(2): 323-333, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28089251

ABSTRACT

Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Kidney Diseases, Cystic/congenital , Adolescent , Alleles , Animals , Cell Cycle Proteins , Child , Cilia/genetics , DNA Damage/genetics , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis , Gene Expression Regulation , Humans , Kidney/cytology , Kidney/metabolism , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Mice , Mice, Knockout , Mitosis , Mutation , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Phenotype , Signal Transduction , Spindle Poles/metabolism , Young Adult , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...