Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
Br J Cancer ; 129(9): 1451-1461, 2023 10.
Article in English | MEDLINE | ID: mdl-37789102

ABSTRACT

BACKGROUND: MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant germ cell tumours (GCTs), regardless of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six of eight microRNAs from these clusters contain the seed sequence 'AAGUGC', determining mRNA targeting. Here we sought to identify the significance of these observations by targeting these microRNAs functionally. METHODS: We targeted miR-371~373 and/or miR-302/367 clusters in malignant GCT cell lines, using CRISPR-Cas9, gapmer primary miR-302/367 transcript inhibition, and peptide nucleic acid (PNA) or locked nucleic acid (LNA)-DNA inhibition targeting miR-302a-d-3p, and undertook relevant functional assays. RESULTS: MiR-302/367 cluster microRNAs made the largest contribution to AAGUGC seed abundance in malignant GCT cells, regardless of subtype (seminoma/YST/EC). Following the unsuccessful use of CRISPR-Cas9, gapmer, and PNA systems, LNA-DNA-based targeting resulted in growth inhibition in seminoma and YST cells. This was associated with the de-repression of multiple mRNAs targeted by AAGUGC seed-containing microRNAs, with pathway analysis confirming predominant disruption of Rho-GTPase signalling, vesicle organisation/transport, and cell cycle regulation, findings corroborated in clinical samples. Further LNA-DNA inhibitor studies confirmed direct cell cycle effects, with an increase of cells in G0/G1-phase and a decrease in S-phase. CONCLUSION: Targeting of specific miR-371~373 and miR-302/367 microRNAs in malignant GCTs demonstrated their functional significance, with growth inhibition mediated through cell cycle disruption.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Male , Adult , Humans , Child , MicroRNAs/genetics , Seminoma/genetics , Testicular Neoplasms/pathology , Cell Cycle , DNA
3.
Andrology ; 11(4): 738-755, 2023 05.
Article in English | MEDLINE | ID: mdl-36254403

ABSTRACT

BACKGROUND: Analyses of small non-coding RNA (ncRNA) expression in malignant germ cell tumours (GCTs) have focused on microRNAs (miRNAs). As GCTs all arise from primordial germ cells, and piwi-interacting RNAs (piRNAs) have important roles in maintaining germline integrity via transposon silencing, we hypothesised that malignant GCTs are characterised by fundamental piRNA dysregulation. AIMS: We undertook global small ncRNA sequencing in malignant GCTs, in order to describe small ncRNA expression changes for both miRNAs and piRNAs. MATERIALS AND METHODS: We performed small ncRNA next generation sequencing on a representative panel of 47 samples, comprising malignant GCT (n = 31) and control (n = 16) tissues/cell lines. Following quality control and normalisation, filtered count reads were used for differential miRNA and piRNA expression analyses via DESeq2. Predicted mRNA targets for piRNAs were identified and utilised for pathway enrichment analyses. RESULTS: Overall, miRNAs and piRNAs comprised 21.9% and 43.0% of small ncRNA species, respectively. There were 749 differentially expressed miRNAs in malignant GCTs, of which 536 (72%) were over-expressed and 213 (28%) under-expressed. The top-ranking over-expressed miRNAs were exclusively from the miR-371∼373 and miR-302/367 clusters. The most significantly under-expressed miRNAs were miR-100-5p, miR-214-3p, miR-125b-5p and let-7 family members, including miR-202-3p. There were 1,121 differentially expressed piRNAs in malignant GCTs, of which 167 (15%) were over-expressed and 954 (85%) under-expressed. Of note, of the top-20 differentially expressed piRNAs, 16 were over-expressed, of which piR-hsa-2506793 was both top-ranking and most abundant. Mobile element (ME; i.e., transposon)-associated piRNAs comprised 166 (15%) of the 1,121 differentially expressed piRNAs, of which 165 (>99%) were down-regulated. The remaining 955 (85%) non-ME-associated piRNAs may have wider cellular roles. To explore this, predicted mRNA targets of differentially expressed piRNAs identified putative involvement in cancer-associated pathways. CONCLUSION: This study confirms previous miRNA observations, giving credence to our novel demonstration of global piRNA dysregulation in gonadal malignant GCTs, through both ME and non-ME-associated pathways, which likely contributes to GCT pathogenesis.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , RNA, Small Untranslated , Humans , Piwi-Interacting RNA , MicroRNAs/genetics , Neoplasms, Germ Cell and Embryonal/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics
4.
Nat Commun ; 13(1): 2270, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477703

ABSTRACT

There is growing evidence for the importance of 3' untranslated region (3'UTR) dependent regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we develop a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict previously unannotated 3'UTRs. We identify unannotated 3'UTRs associated with 1,563 genes across 39 human tissues, with the greatest abundance found in the brain. These unannotated 3'UTRs are significantly enriched for RNA binding protein (RBP) motifs and exhibit high human lineage-specificity. We find that brain-specific unannotated 3'UTRs are enriched for the binding motifs of important neuronal RBPs such as TARDBP and RBFOX1, and their associated genes are involved in synaptic function. Our data is shared through an online resource F3UTER ( https://astx.shinyapps.io/F3UTER/ ). Overall, our data improves 3'UTR annotation and provides additional insights into the mRNA-RBP interactome in the human brain, with implications for our understanding of neurological and neurodevelopmental diseases.


Subject(s)
Transcriptome , 3' Untranslated Regions/genetics , Humans , RNA, Messenger/genetics
5.
Blood Adv ; 5(20): 4003-4016, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34474469

ABSTRACT

Tolinapant (ASTX660) is a potent, nonpeptidomimetic antagonist of cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) and X-linked IAP, which is currently being evaluated in a phase 2 study in T-cell lymphoma (TCL) patients. Tolinapant has demonstrated evidence of single-agent clinical activity in relapsed/refractory peripheral TCL and cutaneous TCL. To investigate the mechanism of action underlying the single-agent activity observed in the clinic, we have used a comprehensive translational approach integrating in vitro and in vivo models of TCL confirmed by data from human tumor biopsies. Here, we show that tolinapant acts as an efficacious immunomodulatory molecule capable of inducing complete tumor regression in a syngeneic model of TCL exclusively in the presence of an intact immune system. These findings were confirmed in samples from our ongoing clinical study showing that tolinapant treatment can induce changes in gene expression and cytokine profile consistent with immune modulation. Mechanistically, we show that tolinapant can activate both the adaptive and the innate arms of the immune system through the induction of immunogenic forms of cell death. In summary, we describe a novel role for IAP antagonists as immunomodulatory molecules capable of promoting a robust antitumor immune response in TCL.


Subject(s)
Lymphoma, T-Cell , Skin Neoplasms , Apoptosis , Humans , Immunity , Morpholines , Neoplasm Recurrence, Local , Piperazines , Pyrroles
6.
Front Psychol ; 12: 680558, 2021.
Article in English | MEDLINE | ID: mdl-34177733

ABSTRACT

Bayesian models of object recognition propose the resolution of ambiguity through probabilistic integration of prior experience with available sensory information. Color, even when task-irrelevant, has been shown to modulate high-level cognitive control tasks. However, it remains unclear how color modulations affect lower-level perceptual processing. We investigated whether color affects feature integration using the flash-jump illusion. This illusion occurs when an apparent motion stimulus, a rectangular bar appearing at different locations along a motion trajectory, changes color at a single position. Observers misperceive this color change as occurring farther along the trajectory of motion. This mislocalization error is proposed to be produced by a Bayesian perceptual framework dependent on responses in area V4. Our results demonstrated that the color of the flash modulated the magnitude of the flash-jump illusion such that participants reported less of a shift, i.e., a more veridical flash location, for both red and blue flashes, as compared to green and yellow. Our findings extend color-dependent modulation effects found in higher-order executive functions into lower-level Bayesian perceptual processes. Our results also support the theory that feature integration is a Bayesian process. In this framework, color modulations play an inherent and automatic role as different colors have different weights in Bayesian perceptual processing.

7.
Stem Cell Reports ; 16(5): 1276-1289, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33891871

ABSTRACT

Sequestosome-1 (SQSTM1/p62) is involved in cellular processes such as autophagy and metabolic reprogramming. Mutations resulting in the loss of function of SQSTM1 lead to neurodegenerative diseases including frontotemporal dementia. The pathogenic mechanism that contributes to SQSTM1-related neurodegeneration has been linked to its role as an autophagy adaptor, but this is poorly understood, and its precise role in mitochondrial function and clearance remains to be clarified. Here, we assessed the importance of SQSTM1 in human induced pluripotent stem cell (iPSC)-derived cortical neurons through the knockout of SQSTM1. We show that SQSTM1 depletion causes altered mitochondrial gene expression and functionality, as well as autophagy flux, in iPSC-derived neurons. However, SQSTM1 is not essential for mitophagy despite having a significant impact on early PINK1-dependent mitophagy processes including PINK1 recruitment and phosphorylation of ubiquitin on depolarized mitochondria. These findings suggest that SQSTM1 is important for mitochondrial function rather than clearance.


Subject(s)
Cerebral Cortex/cytology , Mitochondria/metabolism , Neurons/metabolism , Sequestosome-1 Protein/metabolism , Cell Differentiation , Cell Respiration , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Membrane Potential, Mitochondrial , Mitochondria/pathology , Mitophagy , Oxidative Phosphorylation , Protein Kinases/metabolism , Reproducibility of Results
8.
Mol Cancer Ther ; 19(2): 525-539, 2020 02.
Article in English | MEDLINE | ID: mdl-31748345

ABSTRACT

The RAS-regulated RAF-MEK1/2-ERK1/2 signaling pathway is frequently deregulated in cancer due to activating mutations of growth factor receptors, RAS or BRAF. Both RAF and MEK1/2 inhibitors are clinically approved and various ERK1/2 inhibitors (ERKi) are currently undergoing clinical trials. To date, ERKi display two distinct mechanisms of action (MoA): catalytic ERKi solely inhibit ERK1/2 catalytic activity, whereas dual mechanism ERKi additionally prevents the activating phosphorylation of ERK1/2 at its T-E-Y motif by MEK1/2. These differences may impart significant differences in biological activity because T-E-Y phosphorylation is the signal for nuclear entry of ERK1/2, allowing them to access many key transcription factor targets. Here, we characterized the MoA of five ERKi and examined their functional consequences in terms of ERK1/2 signaling, gene expression, and antiproliferative efficacy. We demonstrate that catalytic ERKi promote a striking nuclear accumulation of p-ERK1/2 in KRAS-mutant cell lines. In contrast, dual-mechanism ERKi exploits a distinct binding mode to block ERK1/2 phosphorylation by MEK1/2, exhibit superior potency, and prevent the nuclear accumulation of ERK1/2. Consequently, dual-mechanism ERKi exhibit more durable pathway inhibition and enhanced suppression of ERK1/2-dependent gene expression compared with catalytic ERKi, resulting in increased efficacy across BRAF- and RAS-mutant cell lines.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/analysis , MAP Kinase Signaling System/drug effects , Animals , Humans , Male , Mice , Mice, Nude , Phosphorylation
9.
Nucleic Acids Res ; 47(14): 7262-7275, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31305886

ABSTRACT

RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.


Subject(s)
Alternative Splicing , Computer Graphics , Gene Expression Profiling/methods , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Genome, Human/genetics , Humans , Models, Genetic , Models, Molecular , Nucleic Acid Conformation , RNA Isoforms/chemistry , RNA Isoforms/genetics , RNA Isoforms/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism
11.
J Contemp Dent Pract ; 19(8): 1005-1012, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30150505

ABSTRACT

AIM: This study was done to determine more accurate impression technique and splinting method for multiple implant impressions in edentulous patients. MATERIALS AND METHODS: A prefabricated maxillary reference model was taken on which four implants were placed parallel to each other using vertical milling machine. Forty custom trays having different tray designs were fabricated using autopolymeri-zing acrylic resin on the stone cast obtained from the reference model. A total of 40 samples (n = 40) were divided into five groups, in which group I included casts obtained from impressions made with closed-tray technique, group II: open-tray impression technique, group III: open-tray impressions splinted with acrylic, group IV: open-tray impressions splinted with light cure material, and group V acted as a control group (reference model). Casts obtained were poured with dental stone. The interimplant distances were checked using coordinate measuring machine to evaluate the three-dimensional (3D) positional accuracy in X, Y, and Z axes. RESULTS: Casts obtained from impressions made with closed-tray technique showed highest mean deviation from the reference model while those obtained from open-tray splinted with light cure showed the least deviation. The casts obtained from open-tray nonsplinted and open-tray acrylic splinted showed intermediate mean deviations. CONCLUSION: The casts obtained from open-tray impression technique were more accurate as compared with the closed-tray technique. Among splinting, the impressions obtained from light cure splinting showed more accuracy than the impressions obtained from acrylic splinting. CLINICAL SIGNIFICANCE: The accuracy of the multiple implant impression is influenced by the type of impression material used which ultimately leads to an accurate cast on which precisely fitting prosthesis is fabricated. Several factors including material accuracy, time span before the impression is poured, and extent of intraoral undercuts are to be kept in mind while choosing an impression material.


Subject(s)
Dental Impression Materials , Dental Impression Technique , Dimensional Measurement Accuracy , Acrylic Resins , In Vitro Techniques , Light-Curing of Dental Adhesives , Materials Testing , Mouth, Edentulous , Polyvinyls , Siloxanes
12.
J Med Chem ; 61(11): 4978-4992, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29775310

ABSTRACT

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.


Subject(s)
Biocatalysis/drug effects , Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Humans , Mice , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 3/chemistry , Models, Molecular , Phosphorylation/drug effects , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics
13.
Nat Chem Biol ; 13(9): 951-955, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28671681

ABSTRACT

Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. Although it has been shown that cells can traffic metabolic enzymes via EVs, much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Our metabolomics and functional analyses both revealed that EVs harbor L-asparaginase activity, catalyzed by the enzyme asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC EVs traffic Asrgl1. Our results demonstrate, for the first time, that NSC EVs function as independent metabolic units that are able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment.


Subject(s)
Asparaginase/metabolism , Extracellular Vesicles/metabolism , Models, Biological
14.
EMBO Rep ; 18(7): 1231-1247, 2017 07.
Article in English | MEDLINE | ID: mdl-28500258

ABSTRACT

Spermatogenesis is associated with major and unique changes to chromosomes and chromatin. Here, we sought to understand the impact of these changes on spermatogenic transcriptomes. We show that long terminal repeats (LTRs) of specific mouse endogenous retroviruses (ERVs) drive the expression of many long non-coding transcripts (lncRNA). This process occurs post-mitotically predominantly in spermatocytes and round spermatids. We demonstrate that this transposon-driven lncRNA expression is a conserved feature of vertebrate spermatogenesis. We propose that transposon promoters are a mechanism by which the genome can explore novel transcriptional substrates, increasing evolutionary plasticity and allowing for the genesis of novel coding and non-coding genes. Accordingly, we show that a small fraction of these novel ERV-driven transcripts encode short open reading frames that produce detectable peptides. Finally, we find that distinct ERV elements from the same subfamilies act as differentially activated promoters in a tissue-specific context. In summary, we demonstrate that LTRs can act as tissue-specific promoters and contribute to post-mitotic spermatogenic transcriptome diversity.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Spermatogenesis , Transcription, Genetic , Animals , Endogenous Retroviruses/genetics , Genomics , Male , Mice , Open Reading Frames , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Spermatocytes/physiology , Terminal Repeat Sequences , Transcriptome
15.
Br J Cancer ; 115(9): 1069-1077, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27673365

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors, such as crizotinib and erlotinib, are widely used to treat non-small-cell lung cancer, but after initial response, relapse is common because of the emergence of resistance through multiple mechanisms. Here, we investigated whether a frontline combination with an HSP90 inhibitor could delay the emergence of resistance to these inhibitors in preclinical lung cancer models. METHODS: The HSP90 inhibitor, onalespib, was combined with either crizotinib or erlotinib in ALK- or EGFR-activated xenograft models respectively (H2228, HCC827). RESULTS: In both models, after initial response to the monotherapy kinase inhibitors, tumour relapse was observed. In contrast, tumour growth remained inhibited when treated with an onalespib/kinase inhibitor combination. Analysis of H2228 tumours, which had relapsed on crizotinib monotherapy, identified a number of clinically relevant crizotinib resistance mechanisms, suggesting that HSP90 inhibitor treatment was capable of suppressing multiple mechanisms of resistance. Resistant cell lines, derived from these tumours, retained sensitivity to onalespib (proliferation and signalling pathways were inhibited), indicating that, despite their resistance to crizotinib, they were still sensitive to HSP90 inhibition. CONCLUSIONS: Together, these preclinical data suggest that frontline combination with an HSP90 inhibitor may be a method for delaying the emergence of resistance to targeted therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzamides/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/drug effects , Isoindoles/administration & dosage , Lung Neoplasms/drug therapy , Neoplasm Recurrence, Local/prevention & control , Protein Kinase Inhibitors/administration & dosage , Animals , Cell Line, Tumor , Crizotinib , Erlotinib Hydrochloride/administration & dosage , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Male , Mice, Inbred BALB C , Mice, SCID , Neoadjuvant Therapy/methods , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Xenograft Model Antitumor Assays
16.
Proc Natl Acad Sci U S A ; 112(52): 15910-5, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26655740

ABSTRACT

Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.


Subject(s)
Protein Interaction Domains and Motifs , Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/metabolism , Algorithms , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding
17.
Cancer Epidemiol Biomarkers Prev ; 24(2): 350-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25416717

ABSTRACT

BACKGROUND: Serum biomarkers for diagnosis and risk stratification of childhood solid tumors would improve the accuracy/timeliness of diagnosis and reduce the need for invasive biopsies. We hypothesized that differential expression and/or release of microRNAs (miRNAs) by such tumors may be detected as altered serum miRNA profiles. METHODS: We undertook global quantitative reverse transcription PCR (qRT-PCR) miRNA profiling (n = 741) on RNA from 53 serum samples, representing 33 diagnostic cases of common childhood cancers plus 20 controls. Technical confirmation was performed in a subset of 21 cases, plus four independent samples. RESULTS: We incorporated robust quality control steps for RNA extraction, qRT-PCR efficiency and hemolysis quantification. We evaluated multiple methods to normalize global profiling data and identified the 'global mean' approach as optimal. We generated a panel of six miRNAs that were most stable in pediatric serum samples and therefore most suitable for normalization of targeted miRNA qRT-PCR data. Tumor-specific serum miRNA profiles were identified for each tumor type and selected miRNAs underwent confirmatory testing. We identified a panel of miRNAs (miR-124-3p/miR-9-3p/miR-218-5p/miR-490-5p/miR-1538) of potential importance in the clinical management of neuroblastoma, as they were consistently highly overexpressed in MYCN-amplified high-risk cases (MYCN-NB). We also derived candidate miRNA panels for noninvasive differential diagnosis of a liver mass (hepatoblastoma vs. combined MYCN-NB/NB), an abdominal mass (Wilms tumor vs. combined MYCN-NB/NB), and sarcoma subtypes. CONCLUSIONS: This study describes a pipeline for robust diagnostic serum miRNA profiling in childhood solid tumors, and has identified candidate miRNA profiles for prospective testing. IMPACT: We propose a new noninvasive method with the potential to diagnose childhood solid tumors.


Subject(s)
Biomarkers, Tumor/blood , MicroRNAs/blood , Neoplasms/blood , RNA, Neoplasm/blood , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Real-Time Polymerase Chain Reaction/methods
18.
Proteins ; 83(2): 203-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25388861

ABSTRACT

Mimicry of structural motifs is a common feature in proteins. The 10-membered hydrogen-bonded ring involving the main-chain C − O in a ß-turn can be formed using a side-chain carbonyl group leading to Asx-turn. We show that the N − H component of hydrogen bond can be replaced by a C(γ) -H group in the side chain, culminating in a nonconventional C − H···O interaction. Because of its shape this ß-turn mimic is designated as ω-turn, which is found to occur ∼ three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C − H···O interaction occurring between the terminal residues, constraining the torsion angles ϕi + 1, ψi + 1, ϕi + 2 and χ'1(i + 2) (using the interacting C(γ) atom). Based on these angles there are two types of ω-turns, each of which can be further divided into two groups. C(ß) -branched side-chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal-binding sites. N-linked glycosylation occurs at the consensus pattern Asn-Xaa-Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω-turn, which may be the recognition site for protein modification. Location between two ß-strands is the most common occurrence in protein tertiary structure, and being generally exposed ω-turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design.


Subject(s)
Proteins/chemistry , Amino Acid Motifs , Hydrogen Bonding , Models, Molecular , Protein Stability , Protein Structure, Tertiary
19.
Mol Cell ; 56(2): 193-204, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25242146

ABSTRACT

The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system.


Subject(s)
Interferon-gamma/metabolism , Neural Stem Cells/cytology , Receptors, Interferon/metabolism , Transport Vesicles/metabolism , 3T3 Cells , Animals , Biological Transport , Cell Communication , Cellular Microenvironment , Inflammation/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Mice , Neural Stem Cells/transplantation , RNA, Messenger , Receptors, Interferon/genetics , STAT1 Transcription Factor/biosynthesis , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction , Th1 Cells/metabolism , Th2 Cells/metabolism , Interferon gamma Receptor
20.
Mol Cancer ; 13: 28, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24517586

ABSTRACT

BACKGROUND: In mammalians, HIF is a master regulator of hypoxia gene expression through direct binding to DNA, while its role in microRNA expression regulation, critical in the hypoxia response, is not elucidated genome wide. Our aim is to investigate in depth the regulation of microRNA expression by hypoxia in the breast cancer cell line MCF-7, establish the relationship between microRNA expression and HIF binding sites, pri-miRNA transcription and microRNA processing gene expression. METHODS: MCF-7 cells were incubated at 1% Oxygen for 16, 32 and 48 h. SiRNA against HIF-1α and HIF-2α were performed as previously published. MicroRNA and mRNA expression were assessed using microRNA microarrays, small RNA sequencing, gene expression microarrays and Real time PCR. The Kraken pipeline was applied for microRNA-seq analysis along with Bioconductor packages. Microarray data was analysed using Limma (Bioconductor), ChIP-seq data were analysed using Gene Set Enrichment Analysis and multiple testing correction applied in all analyses. RESULTS: Hypoxia time course microRNA sequencing data analysis identified 41 microRNAs significantly up- and 28 down-regulated, including hsa-miR-4521, hsa-miR-145-3p and hsa-miR-222-5p reported in conjunction with hypoxia for the first time. Integration of HIF-1α and HIF-2α ChIP-seq data with expression data showed overall association between binding sites and microRNA up-regulation, with hsa-miR-210-3p and microRNAs of miR-27a/23a/24-2 and miR-30b/30d clusters as predominant examples. Moreover the expression of hsa-miR-27a-3p and hsa-miR-24-3p was found positively associated to a hypoxia gene signature in breast cancer. Gene expression analysis showed no full coordination between pri-miRNA and microRNA expression, pointing towards additional levels of regulation. Several transcripts involved in microRNA processing were found regulated by hypoxia, of which DICER (down-regulated) and AGO4 (up-regulated) were HIF dependent. DICER expression was found inversely correlated to hypoxia in breast cancer. CONCLUSIONS: Integrated analysis of microRNA, mRNA and ChIP-seq data in a model cell line supports the hypothesis that microRNA expression under hypoxia is regulated at transcriptional and post-transcriptional level, with the presence of HIF binding sites at microRNA genomic loci associated with up-regulation. The identification of hypoxia and HIF regulated microRNAs relevant for breast cancer is important for our understanding of disease development and design of therapeutic interventions.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Hypoxia-Inducible Factor 1/genetics , MicroRNAs/analysis , RNA, Messenger/analysis , Breast Neoplasms/metabolism , Cell Hypoxia/genetics , Humans , Hypoxia-Inducible Factor 1/metabolism , MCF-7 Cells , Oligonucleotide Array Sequence Analysis , Protein Binding , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...